-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchap1.tex
612 lines (572 loc) · 35.6 KB
/
chap1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
\chapter{Fundamentals}
In this chapter, we first review some fundamental properties of continuous dynamical systems that will be used heavily in later chapters. As we will see, these technical results are interesting in their own right. They can help in interpreting or cross-checking numerical results or physical models for self-consistency or accuracy.
\section{Existence and uniqueness of solutions}
Consider
\begin{align}
\begin{dcases}
\dot{ {x}} = f( {x},t); & {x} \in \mathbb{R}^{n} \\
{x}(t_0) = {x}_0
\end{dcases}.
\end{align}
Does this initial value problem have a unique solution? We have the following theorems to help us answer that question.
\begin{theorem}[Peano]
\label{thm:Peano}
If $f\in \mathcal{C}^0$ near $( {x}_0, t_0)$, then there exists a local solution $\varphi(t)$, i.e.,
\begin{align}
\dot{\varphi}(t) = f(\varphi(t), t), \varphi(t_0) = x_0;\ \forall t\in (t_0 - \varepsilon, t_0 + \varepsilon);\ 0< \varepsilon \ll 1.
\end{align}
\end{theorem}
\begin{ex}[Free falling mass]
Consider a point mass of mass $m$ at position $x$. The acceleration due to gravity is denoted by $g$. Measuring the potential energy from the reference point $x=x_0$, we have the total energy is conserved.
\begin{align}
\frac{1}{2} m \dot{x}^2 = mg(x-x_0).
\end{align}
This implies that
\begin{align}
\begin{dcases}
\dot{x} = \sqrt{2g(x-x_0)} \\
x(0) = x_0
\end{dcases}
\end{align}
on the set $P = \{ x \in \mathbb{R}:\ x \geq x_0\}$. Therefore we have that $f\in \mathcal{C}^0$ in phase space, so by Peano's theorem (cf. Theorem \ref{thm:Peano}), there exists a local solution. A schematic diagram is shown in Fig. \ref{fig:point_mass}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.4\textwidth]{figures/ch1/1freefall.pdf}
\caption{Schematic diagram of the point mass in free fall.}
\label{fig:point_mass}
\end{figure}
The solution is actually $x(t) = x_0 + \frac{g}{2}(t-t_0)^2$, however $x(t) = x_0$ is also a solution to the IVP, therefore we do not have a unique solution. Physically there exists a solution, but this IVP was derived from a heuristic energy-principle, not from Newton's laws, which are not equivalent.
\end{ex}
\begin{definition}
A function $f$ is called locally Lipschitz around $ {x}_0$ if there exists an open set $U_{ {x}_0}$ and $L>0$ such that for all $ {x}, {y} \in U_{ {x}_0}$
\begin{align}
\boxed{\left \| f( {y},t) - f( {x},t)\right \| \leq L \| {y} - {x} \|.}
\end{align}
\end{definition}
\begin{ex}[Lipschitz functions]
Fig. \ref{fig:Lipschitz_ex} shows an example of a Lipschitz and a non-Lipschitz function around $x_0$.
\begin{figure}[h!]
\centering
\includegraphics[width=0.8\textwidth]{figures/ch1/2lipschitz.pdf}
\caption{Interpretation of the Lipschitz property.}
\label{fig:Lipschitz_ex}
\end{figure}
\end{ex}
\begin{theorem}[Picard]
Assume
\begin{enumerate}
\item $f \in \mathcal{C}^0$ in $t$ near $(t_0, {x}_0)$,
\item $f$ is locally Lipschitz in $ {x}$ near $(t_0, {x}_0)$.
\end{enumerate}
Then there exists a unique local solution to the IVP. The proof can be found in \cite{Arnold}.
\end{theorem}
\textbf{Note} the following relations. If $f$ is $\mathcal{C}^1$ $\implies$ $f $ is Lipschitz $\implies $ $f$ is $\mathcal{C}^0$.
\begin{ex}[Free falling mass revisted]
We check if $f$ is Lipschitz.
\begin{align}
\frac{ | f(x) - f(x_0) |}{ |x-x_0 |} = \frac{\sqrt{2g}}{\sqrt{ |x-x_0 |}} \geq L.
\end{align}
Thus $f$ is not Lipschitz near $x_0$.
\end{ex}
\begin{exercise}
Many important properties of nonlinear dynamical systems follow from Gronwall's inequality. Assume that two positive, continuous scalar functions $u(t)$ and $v(t)$ satisfy the condition
\begin{align}
u(t) \leq C + \int_{t_0}^t u(\tau)v(\tau) \, \text{d}\tau
\end{align}
for some constant $C \geq 0$ and for all $t \geq t_0$. Then Gronwall's inequality asserts that
\begin{align}
u(t) \leq Ce^{\int_{t_0}^t v(\tau) \, \text{d}\tau}
\end{align}
for all $t \geq t_0$. The significance of this result is that it gives a $u(t)$-independent upper bound on the growth of $u(t)$. Using Gronwall's inequality, give an upper bound on how fast the solutions of a nonlinear ODE can separate from each other in time. In particular, show that for an ODE of the form
\begin{equation*}
\dot{x} = f(x,t); \quad x \in \mathbb{R}^n,
\end{equation*}
and for two solutions starting from the initial conditions $x_0$ and $\hat{x}_0$ at time $t_0$, we have
\begin{equation*}
|x(t, x_0) - x(t, \hat{x}_0)| \leq |x_0 - \hat{x}_0|e^{L(t - t_0)},
\end{equation*}
where $L$ is a Lipschitz constant for the function $f$ over a domain containing the trajectories of the system over the time interval $[t_0, t]$.
\textit{Hint}: Substitute both solutions into the ODE, integrate the resulting two equations from $t_0$ to $t$, and estimate their normed difference.
\end{exercise}
\section{Geometric consequences of uniqueness}
If the solution is unique, we have a few facts that can be derived from the geometric point of view.
\begin{enumerate}
\item The trajectories of autonomous systems cannot intersect. Note that fixed points do not violate this (e.g. pendulum equations). See Fig. \ref{fig:pend_phase_portrait} which shows the phase portrait of the pendulum.
\begin{figure}[h!]
\centering
\includegraphics[width=0.3\textwidth]{figures/ch1/3pendulum_trajectories.pdf}
\caption{The phase portrait of the pendulum. Trajectories do not intersect since each arrow is pointing at separate trajectories.}
\label{fig:pend_phase_portrait}
\end{figure}
\item For non-autonomous systems, intersections in phase space are possible: a trajectory may occupy the same point $x$ at a different time instants (see the left panel of Fig. \ref{fig:automization}. In this case we can extend the phase space in order to get an autonomous system where there cannot be any intersections.
\begin{figure}[h!]
\centering
\includegraphics[width=0.4\textwidth]{figures/ch1/4intersecting_trajectories.pdf}
\hspace{0.05\textwidth}
\includegraphics[width=0.4\textwidth]{figures/ch1/5extended_space.pdf}
\caption{Left: Intersecting trajectories in phase space for a non-autonomous system. Right: The same trajectory in the extended phase space, without intersections.}
\label{fig:automization}
\end{figure}
\begin{align}
{X} =
\begin{pmatrix}
{x} \\ t
\end{pmatrix},\
F( {X}) =
\begin{pmatrix}
f( {x},t) \\ 1
\end{pmatrix};\
\dot{ {X}} = F( {X}).
\end{align}
\end{enumerate}
\section{Local vs global existence}
\begin{ex}[Exploding solution]
\begin{align}
\begin{dcases}
\dot{x} = x^2 \\
x(t_0) = 1.
\end{dcases}
\end{align}
Integrating yields the solution $x(t) = \frac{1}{1 - (t-t_0)}$. This solution blows up at $t_{\infty }=t_0 + 1$, therefore the solution is only local. This is demonstrated in Fig. \ref{fig:exploding_solution}.
\begin{figure}[h!]
\centering
\begin{tikzpicture}
\begin{axis}
[xmin=0, xmax=2.5, ymin=0.5, ymax=3, domain = 1:1.9, xlabel=$t$, ylabel=$x(t)$, xtick=\empty, ytick=\empty]
\addplot[color=black] {1/(2-x)};
\addplot[color=black, dashed] coordinates {(1.7,0.5) (1.7,3.1)} node[pos=0, above right] {$t_{\infty }$};
\addplot[color=black, dashed] coordinates {(1,0.5) (1,1)} node[pos=0, above right] {$t_{0}$};
\addplot[color=black, dashed] coordinates {(0,1) (1,1)} node[pos=0, above right] {$x_{0}$};
\end{axis}
\end{tikzpicture}
\caption{Solution to the ODE $\dot{x}=x^2$ started from $x(t_0)=1$.}
\label{fig:exploding_solution}
\end{figure}
\end{ex}
To address this problem of local solutions not being able to be continued into global solution, we have the following theorem.
\begin{theorem}[Continuation of solution]
If a local solutions cannot be continued to a time $t=T$, then we must have
\begin{align}
\boxed{\lim_{t\to T} \| {x}(t) \|= \infty.}
\end{align}
The proof can be found in \cite{Arnold}.
\end{theorem}
\begin{ex}[Coupled Pendulum System]
Consider two pendula of masses $m_1$ and $m_2$. They both have length $l$. The angles of these pendula are denoted by $\varphi_1$ and $\varphi_2$. Let us assume that they are coupled by a nonlinear spring, which can be described by a potential $V(\varphi_1, \varphi_2)$. This setup is illustrated in Fig. \ref{fig:coupled_pendulum}. We set $x_1 = \varphi_1,\ x_2 = \dot{\varphi_1},\ x_3 = \varphi_2,\ x_4=\dot{\varphi_2} $ and get the following equation of motion
\begin{align}
\begin{dcases}
\dot{x}_1 = x_2 \\ \dot{x}_2 = \ldots \\ \dot{x}_3 = x_4 \\ \dot{x}_4 = \ldots
\end{dcases}
\end{align}
The RHS is smooth, therefore there exists a unique local solution to any IVP.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch1/6coupled_pendulum.pdf}
\caption{Physical setup of the coupled pendulum with a nonlinear spring.}
\label{fig:coupled_pendulum}
\end{figure}
The phase space is given by
\begin{align}
P = \{ {x}:\ x_1 \in S^1,\ x_2 \in \mathbb{R},\ x_3 \in S^1,\ x_4 \in \mathbb{R} \} = S^1 \times \mathbb{R}\times S^1 \times \mathbb{R}.
\end{align}
Where $S^1$ is the 1 dimensional sphere (i.e. a circle). With this space we know that $ \|x_1 \|$ and $ \|x_3 \|$ are bounded. Due to energy being conserved we have
\begin{subequations}\begin{align}
E &= T+V = \frac{1}{2}m_1 l_1 x_2^2 + \frac{1}{2}m_2 l_2 x_4^2 + \underbrace{V(x_1, x_3)}_{\geq 0}\\
E &= E_0 = \textrm{constant} \geq 0.
\end{align}\end{subequations}
Hence $ \|x_2 \|$ and $ \|x_4 \|$ are also bounded, therefore all solutions exist globally.
\end{ex}
\begin{definition}
A linear system is one such that for $ {x}\in \mathbb{R}^{n},\ {A}(t) \in \mathbb{R}^{n\times n}$ and ${A}\in \mathcal{C}^0$
\begin{align}
\boxed{\dot{ {x}} = {A}(t) {x}.}
\end{align}
\end{definition}
\begin{remark}[]
Note that ${A} $ can be written as ${A}={S} +{\Omega }$ where ${S} = \frac{1}{2}({A} + {A}^T)$ is symmetric (i.e. ${S} = {S}^T)$ and ${\Omega} = \frac{1}{2}({A} - {A}^T)$ is skew symmetric (i.e. ${\Omega} = -{\Omega}^T$). Furthermore the eigenvalues of ${S}$, $\lambda_i$, are all real and their respective eigenvectors, $e_i$, are orthogonal.
\end{remark}
\begin{ex}[Global existence in linear systems]
\begin{subequations}\begin{align}
\langle {x}, \dot{ {x}} \rangle &= \frac{1}{2} \frac{d}{dt} \| {x}(t) \|^2 = \langle {x}, {A}(t) {x}\rangle = \langle {x}, ({S}(t) + {\Omega}(t) ) {x} \rangle \\
&= \langle {x}, S(t) {x} \rangle + \underbrace{\langle {x}, {\Omega}(t) {x} \rangle}_{=0} \stackrel{(*)}{=}
\sum_{i=1}^{n} \lambda_i(t) x_i^2 \\
&\leq \lambda_{ \textrm{max} }(t) \sum_{i=1}^{n} x_i^2 = \lambda _{ \textrm{max} }(t) \| {x}(t) \|^2.
\end{align}\end{subequations}
Where in $(*)$ we used that $ {x} = \sum_{i=1}^{n} x_i {e}_i $ with $ \| {e}_i \|=1$ and $ {e}_i \perp {e}_j$ for all $i \neq j$. Thus we get
\begin{align}
\frac{\frac{1}{2}\frac{d}{dt} \| {x}(t) \|^2}{ \| {x}(t) \|^2} \leq \lambda_{ \textrm{max} }(t)
\implies \frac{1}{2}\log \left( \frac{ \| {x}(t) \|^2}{ \| {x}(t_0) \|^2} \right) \leq \int_{t_0}^{t} \lambda _{ \textrm{max} }(s) ds.
\end{align}
By exponentiating both sides, we obtain
\begin{align}
\boxed{ \| {x}(t) \| \leq \| {x}(t_0) \| \exp\left(\int_{t_0}^{t} \lambda_{ \textrm{max} }(s)ds\right).}
\end{align}
Therefore, by the continuation theorem, global solutions exist as long as $\int_{t_0}^{t} \lambda_{ \textrm{max} }(s) ds < \infty $.
\end{ex}
\section{Dependence on initial conditions}
Given the IVP
\begin{align}
\begin{dcases}
\dot{ {x}} = f( {x},t) \\ {x}(t_0) = {x}_0.
\end{dcases}
\end{align}
With $ {x} \in \mathbb{R}^{n}$ and $f\in \mathcal{C}^r$ for some $r\geq 1$, we have the solution $ {x}(t; t_0, {x}_0)$.
The dependence of the solution on initial data is of interest to us. This is due to us wanting the solution to be robust with respect to errors and uncertainties in the initial data. To address this, we have Theorem \ref{thm:robust_initial_conditions}.
\begin{theorem}[]
If $f \in \mathcal{C}^r$ for $r\geq 1$ then $ {x}(t; t_0, {x}_0)$ is $\mathcal{C}^r$ in $(t_0, {x}_0)$. Proof in \cite{Arnold}.
\label{thm:robust_initial_conditions}
\end{theorem}
The geometric meaning of this is that for $U \subset P \subset \mathbb{R}^{n}$ we have that $F_{t_0}^{t}(U)$ is a smooth deformation of $U$ (cf. Fig. \ref{fig:deformation}).
\begin{figure}[h!]
\centering
\hspace{0.1\textwidth}
\includegraphics[width=0.6\textwidth]{figures/ch1/7smooth_transform.pdf}
\caption{The smooth transformation of $U$. The red point on the right it $F _{t_0}^t( {x}_0)$, i.e. the image of $ {x}_0$ under the evolution operator.}
\label{fig:deformation}
\end{figure}
It turns out $\left(F_{t_0}^{t}\right)^{-1} = F_{t}^{t_0}$ is also $\mathcal{C}^r$, hence we have that $F_{t_0}^{t}$ is a diffeomorphism.
\begin{remark}[The total differential]
We denote the total differential of a function $f:\mathbb{R}^{n}\to \mathbb{R}^{m}$ as $Df$. The total differential is a function which takes a location $x$ as the argument and returns the derivative of $f$ at the point $x$, i.e. the Jacobian. This implies evaluating the Jacobian at the point $x$. For a function $f(x,y)= f(x_1, \ldots, x_n, y_1, \ldots, y_m):\mathbb{R}^{n+m} \to \mathbb{R}^{k}$ the total differential $Df$ means the differential with respect to all of the variables and the total differential with respect to $x$, written $D_xf$ is the total differential only taken with respect to the $x$ variables. Thus for $f(x,y): \mathbb{R}^{n+m} \to \mathbb{R}^{k}$ we have the total differential
\begin{align}
Df &=
\begin{pmatrix}
\frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_1}{\partial x_n} &\frac{\partial f_1}{\partial y_1} &\ldots &\frac{\partial f_1}{\partial y_m}\\
\vdots & & \vdots & \vdots && \vdots \\
\frac{\partial f_k}{\partial x_1} & \ldots & \frac{\partial f_k}{\partial x_n} &\frac{\partial f_k}{\partial y_1} & \ldots &\frac{\partial f_k}{\partial y_m}
\end{pmatrix};\\[8pt]
Df(x_0, y_0) &=
\begin{pmatrix}
\frac{\partial f_1}{\partial x_1}(x_0,y_0) & \ldots & \frac{\partial f_1}{\partial x_n} (x_0,y_0) &\frac{\partial f_1}{\partial y_1}(x_0,y_0) &\ldots &\frac{\partial f_1}{\partial y_m}(x_0,y_0) \\
\vdots & & \vdots & \vdots && \vdots \\
\frac{\partial f_k}{\partial x_1}(x_0,y_0) & \ldots & \frac{\partial f_k}{\partial x_n}(x_0,y_0) &\frac{\partial f_k}{\partial y_1}(x_0,y_0) & \ldots &\frac{\partial f_k}{\partial y_m}(x_0,y_0)
\end{pmatrix},
\end{align}
and the total differential with respect to $x$
\begin{align}
D_x f =
\begin{pmatrix}
\frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_1}{\partial x_n} \\
\vdots & & \vdots \\
\frac{\partial f_k}{\partial x_1} & \ldots & \frac{\partial f_k}{\partial x_n}
\end{pmatrix};\quad
D_xf(x_0, y_0) =
\begin{pmatrix}
\frac{\partial f_1}{\partial x_1}(x_0,y_0) & \ldots & \frac{\partial f_1}{\partial x_n} (x_0,y_0)\\
\vdots & & \vdots \\
\frac{\partial f_k}{\partial x_1}(x_0,y_0) & \ldots & \frac{\partial f_k}{\partial x_n}(x_0,y_0)
\end{pmatrix}.
\end{align}
\end{remark}
Now, how can we compute the Jacobian of the flow map $\frac{\partial {x}(t; t_0, {x}_0)}{ \partial {x}_0} = DF _{t_0}^{t}( {x}_0)$? We start from the IVP and take the gradient (with respect to $x_0$) of both sides. On the left hand side we can exchange the order of the time derivative and the gradient and on the right hand side we use the chain rule. We end up with the equation
\begin{align}
\frac{d}{dt}\frac{\partial {x}}{\partial {x}_0} = D_ {x} f( {x}(t; t_0, {x}_0), t) \frac{\partial {x}}{\partial {x}_0}; \quad \frac{\partial x}{\partial x_0} \in \mathbb{R}^{n \times n}.
\end{align}
This means, that the flow map gradient satisfies the IVP
\begin{subequations}\begin{align}
\frac{d}{dt}\left[ DF_{t_0}^{t}( {x}_0)\right] &= D_{ {x}}f(F_{t_0}^{t}( {x}_0), t) DF_{t_0}^{t}( {x}_0) \\
DF_{t_0}^{t_0}( {x}_0) &= I.
\end{align}\end{subequations}
This is called the equation of variations, which is a linear, non-autonomous ODE for the matrix $M = DF_{t_0}^{t}(x_0)$
\begin{align}
\begin{dcases}
\dot{M} = D_ {x} f( {x}(t; t_0, {x}_0)) M \\ M(t_0) = I.
\end{dcases}
\end{align}
\begin{ex}[Locations of extreme deformation in phase space]
We define
\begin{subequations} \begin{align}
{\xi}(t) &:= \tilde{ {x}}(t) - {x}(t) = {x}(t; t_0, \tilde{ {x}}_0) - {x}(t; t_0, {x}_0)\\
&= {x}(t; t_0, {x}_0) + \frac{\partial {x}}{\partial {x}_0}(t; t_0, {x}_0) {\xi}_0 + \mathcal{O}( \| {\xi}_0 \|^2) - {x}(t; t_0, {x}_0) \\
&= DF_{t_0}^{t}( {x}_0) {\xi}_0 + \mathcal{O}( \| {\xi}_0 \|^2).
\end{align}\end{subequations}
Where we used the Taylor expansion and assume the perturbation to $ {x}_0$ is small, i.e. $ \| {\xi}_0 \| \ll 1$.
\begin{figure}[h!]
\centering
\includegraphics[width=0.5\textwidth]{figures/ch1/8dispersion.pdf}
\caption{Illustration of the quantities $\xi_0$ and $\xi(t)$.}
\end{figure}
Therefore we have
\begin{subequations} \begin{align}
\| {\xi}(t) \|^2 &= \langle DF_{t_0}^{t}( {x}_0) {\xi}_0, DF_{t_0}^{t}( {x}_0) {\xi}_0 \rangle + \mathcal{O}( \| {\xi}_0 \|^3) \\
&= \langle {\xi}_0, \underbrace{\left[ DF_{t_0}^{t}( {x}_0) \right]^T DF_{t_0}^{t}( {x}_0)}_{=: C_{t_0}^{t}( {x}_0)} {\xi}_0 \rangle + \mathcal{O}( \| {\xi}_0 \|^3).
\end{align}\end{subequations}
$C_{t_0}^{t}( {x}_0)$ is known as the Cauchy-Green strain tensor. It is positive definite and symmetric and due to its dependence on the initial condition, $C_{t_0}^{t}(x_0)$ actually defines a \emph{tensor field}.
Therefore the largest possible deformation is
\begin{align}
\max_{ {x}_0, {\xi}_0} \frac{ \| {\xi}(t) \|^2}{ \| {\xi}_0 \|^2} = \max_{ {x}_0, {\xi}_0}\frac{\langle {\xi}_0, C_{t_0}^{t}( {x}_0) {\xi}_0 \rangle}{ \| {\xi}_0 \|^2} = \max_{ {x}_0} \lambda_{n}( {x}_0).
\end{align}
Where we used that $C_{t_0}^{t}$ is positive definite in the last equality, and that $\lambda_n( {x}_0)$ is the largest eigenvalue of $C_{t_0}^{t}( {x}_0)$. Because we typically have exponential growth we introduce the following quantity.
\end{ex}
\begin{definition}
The finite-time Lyapunov exponent is defined as
\begin{align}
\boxed{ \textrm{FTLE} _{t_0}^{t}( {x}_0) := \frac{1}{2|t-t_0|} \log(\lambda_n( {x}_0)).}
\end{align}
\end{definition}
The FTLE is a diagnostic quantity for Lagrangian Coherent Structures (LCS), i.e. influential surfaces governing the evolution in $P$.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch1/9deformation.pdf}
\caption{On the left the red ridge represents large values of $ \textrm{FTLE} _{t_0}^{t}$, on the right the green ridge the high values of $ \textrm{FTLE} _{t}^{t_0}$.}
\label{fig:FTLE_ridges}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch1/10ridge_projection}
\caption{The projection of the FTLE ridge onto the initial value space.}
\label{fig:FTLE_surface}
\end{figure}
The ridges of $ \textrm{FTLE} _{t_0}^{t}$ are the repelling LCS, meanwhile the ridges of $ \textrm{FTLE} _{t}^{t_0}$ are the attracting LCS as depicted in Fig. \ref{fig:FTLE_ridges}. Now we are left with the problem of computing $F_{t_0}^{t}( {x}_0)$. Recall that analytically we start with $F_{t_0}^{t}( {x}_0)$ and use this to calculate $DF_{t_0}^{t}( {x}_0)$. From here we can find $C_{t_0}^{t}( {x}_0)$, giving us $\lambda_n( {x}_0)$ and thereby the FTLE. We now outline a process to compute the FTLE numerically.
\begin{enumerate}
\item Define an initial $M\times N$ grid of initial data $ {x}_0(i,j) \in \mathbb{R}^2$.
\item Launch trajectories numerically from grid points to obtain a discrete approximation of $F_{t_0}^{t}( {x}_0)$ as $F_{t_0}^{t}( {x}_0(i,j))$.
\item Use finite differencing to approximate
\begin{align}
DF_{t_0}^{t}( {x}_0(i,j)) \approx
\begin{pmatrix}
\frac{x(t; t_0, x_0(i,j) + \delta e_1)_1 - x(t; t_0, x_{0}(i,j) - \delta e_1)_1}{2\delta} &
\ldots &
\frac{x(t; t_0, x_0(i,j) + \delta e_n)_1 - x(t; t_0, x_{0}(i,j) - \delta e_n)_1}{2\delta}\\
\vdots & & \vdots \\
\frac{x(t; t_0, x_0(i,j) + \delta e_1)_n - x(t; t_0, x_{0}(i,j) - \delta e_1)_n}{2\delta} &
\ldots &
\frac{x(t; t_0, x_0(i,j) + \delta e_n)_n - x(t; t_0, x_{0}(i,j) - \delta e_n)_n}{2\delta}
\end{pmatrix}
.
\end{align}
\end{enumerate}
This process then yields the surface we see in Fig. \ref{fig:FTLE_surface}.
\begin{ex}[Calculating the FTLE for the double gyre]
Due to incompressibility, we can define the two dimensional flow using a single scalar function called the stream function.
\begin{align}
\Psi(x,y) = -\sin(\pi x) \sin(\pi y).
\end{align}
The components $(u,v)$ of the fluid velocity (${v} = (u,v)$) are obtained as partial derivatives of the stream function, according to the formulas
\begin{align}
\begin{dcases}
u = \frac{\partial \Psi}{\partial y} \\
v = \ - \frac{\partial \Psi}{\partial x}.
\end{dcases}
\end{align}
The Lagrangian trajectories of fluid particles obey the differential equations (i.e. we have the fluid velocity field)
\begin{align}
\begin{dcases}
\dot{x} = u = \frac{\partial \Psi}{\partial y} \\
\dot{y} = v = - \frac{\partial \Psi}{\partial x}.
\end{dcases}
\end{align}
Interestingly, in this case, the phase space coincides with the physical space spanned by the coordinates $(x,y)$.
\begin{remark}[]
This is an example of a Hamiltonian system, where $\Psi$ is the Hamiltonian (usually denoted as $H$).
\end{remark}
For any autonomous Hamiltonian system we have that the Hamiltonian is constant along trajectories. We can verify this as follows
\begin{align}
\frac{d}{dt}\Psi(x(t),y(t)) = \frac{\partial \Psi}{\partial x}\dot{x} + \frac{\partial \Psi}{\partial y}\dot{y} = 0.
\end{align}
So we have that trajectories are level curves of $\Psi(x,y)$. We can then derive the phase portrait from the level curves of $\Psi$. Further, we have that $\dot{x} = \frac{\partial \Psi}{\partial y} = - \pi \sin(\pi x) \cos(\pi y)$ which yields that $ \textrm{sign} (\dot{x}) = - \textrm{sign} (\sin(\pi x)) \textrm{sign} (\cos(\pi y))$. Putting these together we can construct the contour plot with arrows. The contour plot, and FTLE approximation are shown in Fig. \ref{fig:FTLE_double_gyre}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.5\textwidth]{figures/ch1/11contour_phase.png}
\hspace{0.03\textwidth}
\includegraphics[width=0.45\textwidth]{figures/ch1/12ftle_exploration.png}
\includegraphics[width=0.5\textwidth]{figures/ch1/13ftle_final.png}
\caption{Top left: The analytic phase plot. Top right: The exploration done to calculate FTLE. Bottom: The FTLE plot. Figures here were taken from Shawn Shadden of UC Berkeley.} \label{fig:FTLE_double_gyre}
\end{figure}
\end{ex}
\begin{ex}[ABC flow]
Let our dynamical system be defined as follows with $A,B,C \in \mathbb{R}$
\begin{align}
\begin{dcases}
\dot{x} = A \sin(z) + C \cos(y) \\
\dot{y} = B \sin(x) + A \cos(z) \\
\dot{z} = C \sin(y) + B \cos(x).
\end{dcases}
\end{align}
This is an exact solution to Euler's equations. We have an autonomous velocity field. Depending on parameters it can even generate chaotic fluid trajectories. The numerical approximation of the FTLE for the ABC flow is depicted in Fig. \ref{fig:FTLE_flows}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.4\textwidth]{figures/ch1/14fluid1.png}
\hspace{0.03\textwidth}
\includegraphics[width=0.55\textwidth]{figures/ch1/15vortex_shedding.png}
\caption{Left: numerically calculated FTLE field of the ABC flow. Darker colors signify higher FTLE values \cite{Haller2001}. Right: Again the FTLE is plotted, for vortex shedding behind a cylinder under a free surface \cite{Sun2016}.}
\label{fig:FTLE_flows}
\end{figure}
\end{ex}
\begin{exercise}
Consider the non-dimensionalized, force-damped pendulum equation
\begin{align}
\ddot{x} + k\dot{x} + \sin(x) = a\sin(t),
\end{align}
where $k \geq 0$ is the damping coefficient and $a \geq 0$ is the forcing amplitude.
\begin{enumerate}[label=(\alph*)]
\item For vanishing damping and forcing $(a=k=0)$, compute and plot numerically the FTLE field for this system over a $100 \times 100$ grid of initial conditions, covering the square $[- \pi, \pi] \times [-\pi, \pi]$ in the phase space of the pendulum. Perform the computation for long enough times so that the FTLE plot fully reveals the separatrices of the system, as we discussed in class for the undamped pendulum.
\item To explore the fate of these separatrices under mild damping and forcing, repeat the same FTLE computations for $a = 0.5$ and $k = 0.1$. Discuss domains of attractions and their boundaries based on the results.
\end{enumerate}
\textit{Hint}: Consider using MATLAB’s ODE45 routine for trajectory integration. To this end, you need to assemble all initial grid points into a single long vector, and pass that vector on to ODE45 as an initial condition. You will then need to define an appropriate extended ODE, whose right-hand side will be called by ODE45 to produce an advected image of the extended initial condition vector. Subsequently, you will need to convert the elements of this advected vector back into advected grid positions.
Alternatively, you could write your own 4-point Runge-Kutta solver to track trajectories simultaneously on the full grid of initial conditions (see the algorithm discussed in class).
\end{exercise}
\section{Dependence on parameters}
We now have the IVP
\begin{align}
\begin{dcases}
\dot{ {x}} = f( {x},t, {\mu} ) \\ {x}(t_0) = {x}_0.
\end{dcases}
\end{align}
With $ {x} \in \mathbb{R}^{n},\ f\in \mathcal{C}^r,\ r\geq 1$, therefore we have a solution $ {x}(t; t_0, {x}_0, {\mu} ) \in \mathcal{C}^r_{ {x}_0}$.
We now examine how solutions depend $ {\mu } $. This is critical as solutions should be robust to changes or uncertainties in the model.
\begin{ex}[Perturbation Theory]
Given a weakly nonlinear oscillator
\begin{align}
m \ddot{ x} + c \dot{ x} + k x = \varepsilon f(x, \dot{x}, t),\ 0 \leq \varepsilon \ll 1,\ x \in \mathbb{R}.
\end{align}
The usual approach is to seek solutions by expanding from the known solution of the linear limit $\varepsilon=0$, i.e.
\begin{align}
x_{\varepsilon}(t) = \varphi_0(t) + \varepsilon \varphi_1(t) + \varepsilon^2 \varphi_2(t) + \ldots + \mathcal{O}(\varepsilon^r).
\end{align}
If $x_{\varepsilon}(t)$ is in $\mathcal{C}^{r}_{\varepsilon}$, we have $\varphi_1(t) = \left.\frac{\partial x_\varepsilon(t)}{\partial \varepsilon}\right |_{\varepsilon =0}$ and $\varphi_2(t) = \left.\frac{\partial^2 x_\varepsilon(t)}{\partial \varepsilon^2}\right |_{\varepsilon =0}$
\end{ex}
Regularity with respect to the parameter $ {\mu} $ actually follows from regularity with respect to the initial condition $ {x}_0$. We can use the following trick to extend the IVP with a dummy variable $ {\mu} $
\begin{align}
\begin{dcases}
\dot{ {x}} = f( {x},t,\mu ) \\ \dot{ {\mu}} = 0 \\ {x}(t_0) = {x}_0 \\ {\mu} (t_0) = {\mu}_0.
\end{dcases}
\end{align}
Thus with $ {X}=
\begin{pmatrix}
{x} \\ {\mu}
\end{pmatrix}
\in \mathbb{R}^{n+p}$ and $F( {X}_0) =
\begin{pmatrix}
f \\ 0
\end{pmatrix};\ {X}_0 =
\begin{pmatrix}
{x}_0 \\ {\mu} _0
\end{pmatrix}
$. We have the extended IVP
\begin{align*}
\begin{dcases}
\dot{ {X}} = F( {X}) \\ {X}(t_0) = {X}_0.
\end{dcases} \numberthis \label{eq:ivp_param}
\end{align*}
Applying the previous result on regularity with respect to $ {x}_0$ to \eqref{eq:ivp_param}, we have that $f\in \mathcal{C}^{r}_{ {x}, {\mu} }$ implies that $ {X}(t) \in \mathcal{C}^{r}_{ {X}_0}$ in turn implying that $ {x}(t; t_0, {x}_0, \cdot) \in \mathcal{C}^{r}_{ {\mu} }$. The solution is as smooth in parameters as the RHS of the dynamical system.
\begin{ex}[Periodic Oscillations of a nonlinear springboard]
\begin{figure}[h!]
\centering
\includegraphics[width=0.55\textwidth]{figures/ch1/16springboard_setup.pdf}
\hspace{0.05\textwidth}
\includegraphics[width=0.35\textwidth]{figures/ch1/17springboard_spring.pdf}
\caption{Setup for the nonlinear springboard.}
\label{fig:nonlin_springboard}
\end{figure}
Given an elastic beam extending from a solid guide, we measure the deflection of this beam with the variable $x$. This system is illustrated in the left panel of Fig. \ref{fig:nonlin_springboard}. By increasing $x$, the effective free length of the beam is shortened, thereby stiffening the spring nonlinearly. The effect of this nonlinearity on the force exerted on the spring is illustrated in the right panel of Fig. \ref{fig:nonlin_springboard}. This setup yields the following equations of motion
\begin{align}
\begin{dcases}
\ddot{x} + x + \varepsilon x^3 = 0; \quad 0 \leq \varepsilon \ll 1 \\
x(0) = a_0;\quad \dot{x}(0)=0.
\end{dcases}
\end{align}
So we have weak nonlinearity with no known explicit solution. Although weak, this nonlinearity is still significant, as can be seen in Fig. \ref{fig:effect_nonlin_springboard}. Rewriting this as a first order ODE ($x_1=x;\ x_2=\dot{x}$ ), and note that the RHS is $\mathcal{C}^{r}_{ {x}, {\mu} }$, therefore there exists a unique local solution that is also $\mathcal{C}^{r}_{ {\mu} }$. Thus the expansion is justified
\begin{align*}
x_{\varepsilon}(t) = \varphi_0(t) + \varepsilon \varphi_1(t) + \ldots + \mathcal{O}(\varepsilon ^{r}) \numberthis \label{eq:starstar}.
\end{align*}
We can see, by substitution, that for $\varepsilon=0$ we find that $\varphi_0(t) = a_0 \cos(t)$.
Now we look specifically for $T$-periodic solutions, as we would expect such a solution physically, therefore we have
\begin{align}
\varphi_i(t) = \varphi_i(t+T).
\end{align}
The period $T$ still has to be determined. Plugging this power series into \eqref{eq:starstar} to get
\begin{subequations}
\begin{align}
&\mathcal{O}(1):\quad \ddot{\varphi}_0 + \varphi_0 &&= 0 \\
&\mathcal{O}(\varepsilon):\quad \ddot{\varphi}_1 + \underbrace{\varphi_1}_{\omega = 1} &&= -\varphi_0^{3} = -a_0^{3}\cos ^{3}(t) = -a_0^{3}\left[ \frac{1}{4} \cos (3t) + \frac{3}{4} \underbrace{ \cos(t)}_{ \textrm{resonance} }\right] \numberthis \label{eq:3star}.
\end{align}
\end{subequations}
We can see that \eqref{eq:3star} is a linear oscillator with a forcing coming from the zeroth order solution. Since the zeroth order solution $\varphi_0= a_0 \cos(t)$ already solves the IVP we have the following initial conditions
\begin{align}
\varphi_1(0) = 0;\quad \dot{\varphi_1}(t) = 0.
\end{align}
This holds as $\varphi_0 = a_0 \cos(t)$ already solves the IVP. The general solution to this equation is the sum of two terms. We add the general solution of the homogeneous part and a particular solution to the inhomogeneous part. We can write this solution to \eqref{eq:3star} as
\begin{subequations}\begin{align}
\varphi_1(t) &= \varphi_1^{ \textrm{hom} }(t) + \varphi_{1}^{ \textrm{part} }(t) \\
&= \underbrace{A \cos(t) + B \sin (t)}_{ \textrm{TBD from initial conditions} } +
\underbrace{ C \cos(3t) + D t \cos(t) + Et\sin(t) }_{\textrm{TBD from \eqref{eq:3star}}}.
\end{align}\end{subequations}
Observe that due to a resonance between the natural frequency of the oscillator and the forcing secular terms, $t \cos(t)$ and $t \sin(t)$ appear. Thus it cannot be periodic, so our Ansatz already fails for $i=1$. We conclude that no solution of this type exists. Our Ansatz was too restrictive and $T$ should depend on $\varepsilon$.
\begin{figure}[h!]
\centering
\includegraphics[width=0.5\textwidth]{figures/ch1/18failed_ansatz.pdf}
\caption{Numerical integration of $x$ for $a_0=1$ and different values of $\varepsilon$.}
\label{fig:effect_nonlin_springboard}
\end{figure}
\noindent
\textbf{Lindstedt's idea} We should seek a solution of the form
\begin{align}
x_{\varepsilon}(t) = \varphi_0(t;\varepsilon) + \varepsilon \varphi_1 (t;\varepsilon) + \varepsilon^2 \varphi_2(t;\varepsilon) + \mathcal{O}(\varepsilon^3).
\end{align}
Furthermore $\varphi_i$ should be $T_\varepsilon$ periodic, i.e. the period should depend on the strength of the nonlinearity $\varepsilon$.
\begin{align}
\varphi_i(t+T_\varepsilon; \varepsilon) = \varphi_i(t;\varepsilon).
\end{align}
Rewriting the period as
\begin{align}
T_\varepsilon = \frac{2 \pi }{\omega(\varepsilon)}; \quad \omega(\varepsilon) = 1 + \varepsilon \omega_1 + \varepsilon^2 \omega_2 + \mathcal{O}(\varepsilon^3).
\end{align}
We then rescale time according to $\tau = \omega(\varepsilon) t$ to find
\begin{align}
\frac{d}{d\tau} = \frac{1}{\omega(\varepsilon)} \frac{d}{dt} \implies
\boxed{[\omega(\varepsilon)]^2 x'' + x + \varepsilon x^3 = 0.}
\end{align}
Where we have taken $x'$ to represent $\frac{dx}{d\tau}$. Plugging our expression into the rescaled ODE yields
\begin{align}
\left( 1 + 2 \varepsilon \omega_1 + \mathcal{O}(\varepsilon^2) \right) \left[ \varphi_0'' + \varepsilon \varphi'' + \mathcal{O}(\varepsilon^2) \right] + \left[ \varphi_0 + \varepsilon \varphi_1 + \mathcal{O}(\varepsilon^2) \right] + \varepsilon \left[\varphi_0^{3} + \mathcal{O}(\varepsilon) \right] = 0.
\end{align}
Matching equal powers of $\varepsilon$ yields
\begin{subequations}\begin{align}
\mathcal{O}(1)&:\ \varphi_0'' + \varphi_0 = 0 \implies \varphi_0(\tau) = a_0 \cos(\tau);\quad \varphi_0(0)=a_0;\quad \dot{\varphi_0}(0) = 0 \\
\mathcal{O}(\varepsilon)&:\ \varphi_1'' + \varphi_1 = - \varphi^3_0 - 2\omega_1 \varphi_{0}'' =
\left(2 \omega_1 a_0 - \frac{3}{4}a_0^{3}\right) \underbrace{\cos (\tau)}_{ \textrm{resonance} } - \frac{a_0^{3}}{4} \cos(3 \tau); \\
&\phantom{:}\ \varphi_1(0)=0; \quad \dot{\varphi_1}(0) = 0.
\end{align}\end{subequations}
From the first line, we can see the initial conditions are fulfilled. In this step we used that $\dot{\varphi}(t=0) = 0$ if and only if $\omega(\varepsilon)\varphi '(0) = 0$. We get the solution
\begin{align}
\varphi_1(t) = A \cos(\tau) + B \sin(\tau) + C \cos(3\tau) + D\tau \cos(\tau) + E \tau \sin(\tau).
\end{align}
The presence of resonance again excludes periodic solutions, but now we can select $\omega_1$ to eliminate these terms.
\begin{align}
2\omega_1 a_0 - \frac{3}{4} a_0 ^{3} = 0 \implies \boxed{\omega_1 = \frac{3}{8}a_0^{2}.}
\end{align}
This successfully eliminates the resonance and determines the missing frequency term at $\mathcal{O}(\varepsilon)$. Thus we find
\begin{align}
x_\varepsilon(\tau) = a_0 \cos(\tau) - \frac{\varepsilon}{32}a_0^{3}\left( \cos(\tau) - \cos (3\tau) \right) + \mathcal{O}(\varepsilon^2).
\end{align}
In the original time scaling this is
\begin{align}
x_\varepsilon (t) = a_0 \cos (\omega t) - \frac{\varepsilon}{32} a_0^3 \left( \cos(\omega t) - \cos(3\omega t)\right) + \mathcal{O}(\varepsilon^2); \quad \omega = 1+ \frac{3}{8}\varepsilon a_0^2 + \mathcal{O}(\varepsilon^2).
\end{align}
This procedure can be continued to higher order terms, where we select $\omega_2$ so that the $\mathcal{O}(\varepsilon^2)$ terms cancel.
\begin{figure}[h!]
\centering
\includegraphics[width=0.5\textwidth]{figures/ch1/19approximation_accuracy.pdf}
\caption{Approximation (dots) vs analytic solution (solid line) of $x$ on the time interval $[0,20]$.}
\end{figure}
\begin{exercise}
Consider the nonlinear oscillator
\begin{align}
\ddot{x} + \omega_0^2x = \varepsilon Mx^2,
\end{align}
where $\varepsilon M x^2$ represents a small nonlinear forcing term $(0 \leq \varepsilon \ll 1, M > 0)$.
Using Lindstedt's method, find an $\mathcal{O}(\varepsilon)$ approximation for nonlinear motions as a function of their initial position, with zero initial velocity.
\end{exercise}
\begin{exercise}
Consider the forced \emph{van der Pol equation}
\begin{align}
\ddot{x} + \varepsilon(x^2 - 1)\dot{x} + x = F\cos(\omega t),
\end{align}
which arises in models of self-excited oscillation, such as those of a valve generator with a cubic valve characteristic. Here $F, \omega > 0$ are parameters, and $0 \leq \varepsilon \ll 1$.
\begin{enumerate}[label=(\roman*)]
\item For small values of $\varepsilon$, find an approximation for an \textbf{exactly} $2\pi/\omega$-periodic solution of the equation. The error of your approximation should be $\mathcal{O}(\varepsilon)$.
\item For $\varepsilon = 0.1, \; \omega = 2$, and $F = 1$, verify your prediction numerically by solving the equation numerically. Plot your numerical solution along with your analytic prediction computed in (i).
\textit{Note}: For chaotic dynamics in the forced van der Pol equation, see Section 2.1 of \newline\cite{GuckenheimerHolmes}.
\end{enumerate}
\end{exercise}
\end{ex}