-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
100 lines (83 loc) · 3.89 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
'''
@Author: WANG Maonan
@Date: 2023-03-06 13:47:23
@Description: 测试不同的模型在不同环境下的结果
@LastEditTime: 2023-03-06 14:12:54
'''
import argparse
import shutil
import torch
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import SubprocVecEnv, VecNormalize
from aiolos.utils.get_abs_path import getAbsPath
from aiolos.trafficLog.initLog import init_logging
pathConvert = getAbsPath(__file__)
from env import makeENV
from create_params import create_test_params
def test_model(
model_name, net_name, net_env,
n_stack, n_delay,
singleEnv=False, fineTune=False,
):
if model_name == 'None':
model_name = ''
assert model_name in ['scnn', 'ernn', 'eattention', 'ecnn', 'inference', 'predict', 'ernn_P', 'ernn_C','inference_scnn'], f'Model name error, {model_name}'
# args, 这里为了组合成模型的名字
N_STACK = n_stack # 堆叠
N_DELAY = n_delay # 时延
Model_DELAY=0
MODEL_PATH = pathConvert(f'./results/models_test/{model_name}/{net_env}_{net_name}_{N_STACK}_{Model_DELAY}/best_model.zip')
VEC_NORM = pathConvert(f'./results/models_test/{model_name}/{net_env}_{net_name}_{N_STACK}_{Model_DELAY}/best_vec_normalize.pkl')
LOG_PATH = pathConvert(f'./results/test/log/{model_name}/{net_env}_{net_name}_{N_STACK}_{N_DELAY}/') # 存放仿真过程的数据
output_path = pathConvert(f'./results/test_temp/output/{model_name}/{net_env}_{net_name}_{N_STACK}_{N_DELAY}/')
eval_params = create_test_params(
net_env=net_env, net_name=net_name, output_folder=output_path,
N_DELAY=N_DELAY, N_STACK=N_STACK,
LOG_PATH=LOG_PATH,
)
for _key, eval_param in eval_params.items():
# The environment for evaluating
eval_env = SubprocVecEnv([makeENV.make_env(env_index=f'test_{N_STACK}_{N_DELAY}', **eval_param) for i in range(1)])#干什么用
eval_env = VecNormalize.load(load_path=VEC_NORM, venv=eval_env) # 进行标准化
eval_env.training = False # 测试的时候不要更新
eval_env.norm_reward = False
# ###########
# start train
# ###########
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = PPO.load(MODEL_PATH, env=eval_env, device=device)
# #########
# 开始测试
# #########
obs = eval_env.reset()
done = False # 默认是 False
while not done:
action, _state = model.predict(obs, deterministic=True)
# action = np.array([0]) # 对于 discrete 此时绿灯时间就是 5
obs, reward, done, info = eval_env.step(action) # 随机选择一个动作, 从 phase 中选择一个 # 干什么用
eval_env.close()
# 拷贝生成的 tls 文件
_net, _route = _key.split('__')
shutil.copytree(
src=pathConvert(f'./SumoNets/{net_env}/add/'),
dst=f'{output_path}/add/',
ignore=shutil.ignore_patterns('*.add.xml'),
dirs_exist_ok=True,
)
if __name__ == '__main__':
init_logging(log_path=pathConvert('./test_log/'), log_level=0)
parser = argparse.ArgumentParser()
parser.add_argument('--stack', type=int, default=6)
parser.add_argument('--delay', type=int, default=0)
parser.add_argument('--model_name', type=str, default='scnn')
parser.add_argument('--net_env', type=str, default='train_four_345')
parser.add_argument('--net_name', type=str, default='4phases.net.xml')
parser.add_argument('--singleEnv', default=False, action='store_true')
parser.add_argument('--fineTune', default=False, action='store_true')
args = parser.parse_args()
test_model(
net_env=args.net_env,
model_name=args.model_name, net_name=args.net_name,
n_stack=args.stack, n_delay=args.delay,
singleEnv=args.singleEnv, fineTune=args.fineTune
)