-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonte_carlo.cpp
147 lines (132 loc) · 5.31 KB
/
monte_carlo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#include "monte_carlo.h"
MonteCarloAgent::MonteCarloAgent(int n, int d, int m, double betas[4])
{
double beta_sum = 0;
n_rollouts = n;
rollout_depth = d;
n_best_moves = m;
for(int i = 0; i < 4; i++) {
beta_sum += betas[i];
}
beta1 = betas[0] / beta_sum;
beta2 = betas[1] / beta_sum;
beta3 = betas[2] / beta_sum;
beta4 = betas[3] / beta_sum;
}
MonteCarloAgent::MonteCarloAgent(int n, int d, int m) {
double betas[4] = {0.19142, 0.3035, 0.20591, 0.29919};
MonteCarloAgent(n, d, m, betas);
}
MonteCarloAgent::MonteCarloAgent(int n, int m) {
MonteCarloAgent(n, 20, m);
}
struct ThreadData {
GameState* determinization;
Move* move;
std::vector<double>* scores;
double* score;
int n_rollouts;
int rollout_depth;
};
void *doRollouts(void* thread_data) {
ThreadData* data = (ThreadData*) thread_data;
GameState local_determinization;
for(int i = 0; i < data->n_rollouts; i++) {
local_determinization = data->determinization->copy();
local_determinization.doMove(*(data->move));
local_determinization.doRandomMoves(data->rollout_depth);
if(local_determinization.hasWinner()) {
if(local_determinization.getWinner() == local_determinization.getPlayerTurn()) {
data->scores->push_back(1.0);
*data->score += data->scores->back();
}
} else {
data->scores->push_back(heuristic(&local_determinization, data->determinization->getPlayerTurn()));
*data->score += data->scores->back();
}
}
pthread_exit(0);
}
int heuristic_dist_from_home(GameState* state, Player player) {
std::set<std::pair<char, char>>::iterator it;
int d = 0;
for(it = state->getPieceLocations(player)->begin(); it != state->getPieceLocations(player)->end(); it++) {
if(state->getPieceAt(it->first, it->second) != scout) {
d += distanceFromHome(player, it->second);
}
}
return d;
}
double MonteCarloAgent::heuristic(GameState* state, Player player) {
Player otherPlayer = player == red ? blue : red;
double score;
double n_pieces_score;
double intelligence_score;
double unknown_intelligence_score;
double dist_from_home_score;
if(state->hasWinner()) {
score = state->getWinner() == player ? 1.0 : 0.0;
} else {
n_pieces_score = (double) state->getNumPieces(player) / ((double) state->getNumPieces(player) + (double) state->getNumPieces(otherPlayer));
intelligence_score = (((double) (state->getNumPiecesOfVisibility(player, unknown) + state->getNumPiecesOfVisibility(player, unknown_movable))) /
((double) (state->getNumPiecesOfVisibility(player, unknown) + state->getNumPiecesOfVisibility(player, unknown_movable) +
state->getNumPiecesOfVisibility(otherPlayer, unknown) + state->getNumPiecesOfVisibility(otherPlayer, unknown_movable))));
unknown_intelligence_score = ((double) state->getNumPiecesOfVisibility(player, unknown) /
((double) state->getNumPiecesOfVisibility(player, unknown) + (double) state->getNumPiecesOfVisibility(otherPlayer, unknown)));
dist_from_home_score = ((double) heuristic_dist_from_home(state, player) /
((double) heuristic_dist_from_home(state, player) + (double) heuristic_dist_from_home(state, otherPlayer)));
score = beta1 * n_pieces_score + beta2 * intelligence_score + beta3 * unknown_intelligence_score + beta4 * dist_from_home_score;
}
return score;
}
void MonteCarloAgent::get_move(GameState* state, Move* bestMove) {
std::vector<Move> moves = state->getMoves();
std::vector<double>* scores;
std::vector<double> rollouts;
std::vector<Move>::iterator it;
GameState determinization = state->sampleDeterminization(state->getPlayerTurn());
pthread_t* threads;
ThreadData* datas;
double* score_totals;
double score;
double best_score = -1;
Move _bestMove;
sortMoves(state, &moves);
while(moves.size() > n_best_moves) {
moves.pop_back();
}
threads = new pthread_t[moves.size()];
datas = new ThreadData[moves.size()];
scores = new std::vector<double>[moves.size()];
score_totals = new double[moves.size()];
for(int j = 0; j < moves.size(); j++) {
datas[j].determinization = &determinization;
datas[j].move = &moves[j];
datas[j].scores = &scores[j];
scores[j].clear();
datas[j].n_rollouts = (int) (n_rollouts / moves.size());
datas[j].rollout_depth = rollout_depth;
datas[j].score = score_totals + j;
*datas[j].score = 0;
pthread_create(&threads[j], NULL, doRollouts, (void*) (&datas[j]));
}
for(int i = 0; i < moves.size(); i++) {
pthread_join(threads[i], NULL);
}
for(int i = 0; i < moves.size(); i++) {
score = *datas[i].score;
if(score > best_score) {
best_score = score;
_bestMove = moves[i];
}
}
*bestMove = _bestMove;
delete [] threads;
delete [] datas;
delete [] scores;
delete [] score_totals;
}
void MonteCarloAgent::do_deployment(GameState* state) {
std::vector<DeploymentMove> deploymentMoves;
do_semirandom_deployment(state, &deploymentMoves);
}