-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path21_GPT2_TrainingLoop.py
391 lines (289 loc) · 11.9 KB
/
21_GPT2_TrainingLoop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
######## GPT2 TRAINING LOOP ########
#
# Notebook to export the test data for evaluation and train the dataset on the GPT2 model.
#
####
# %%
print('''
_ \ _| _) | |
| | \ \ / _ \ __| | | __| __| _ \ __|
| | \ \ / __/ | __| | | | __/ |
\___/ \_/ \___| _| _| _| \__| \__| \___| _|
''')
print('''
_____ _____ _______ ___ _______ _ _
/ ____| __ \__ __|__ \ |__ __| (_) (_)
| | __| |__) | | | ) |_____| |_ __ __ _ _ _ __ _ _ __ __ _
| | |_ | ___/ | | / /______| | '__/ _` | | '_ \| | '_ \ / _` |
| |__| | | | | / /_ | | | | (_| | | | | | | | | | (_| |
\_____|_| |_| |____| |_|_| \__,_|_|_| |_|_|_| |_|\__, |
__/ |
|___/
''')
# %%
# change dataset
trainData = 'both' # 'rap' 'both'
# %%
print('\n')
print('⏳⏳⏳ Starting GPT2 TRAINING by Overfitter ⏳⏳⏳')
# %%
import pandas as pd
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import torch
from torch.utils.data import Dataset, DataLoader, random_split, RandomSampler, SequentialSampler
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, GPT2LMHeadModel
from transformers import AdamW, get_linear_schedule_with_warmup
from tqdm import tqdm, trange
import time
import datetime
import os
import random
# %%
print('✅ --> All imports are done!')
# get own file name
import sys
file_name = sys.argv[0]
print(' --> FILE NAME: ', file_name)
# %%
# set seed for randaomness
seed = 0
#Seeds and hyperparameters
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# set random seed
random.seed(seed)
BATCH_SIZE = 2
EPOCHS = 10
LEARNING_RATE = 2e-5
WARMUP_STEPS = 200
EPSILION = 1e-8
# this produces sample output every 100 steps
sample_every = 100
# %% [markdown]
# ---
# %%
# Paths
# top dataset
df_top = pd.read_csv('./datasets/df_top.csv')
df_top = df_top.drop(columns=['Song', 'Artist'])
# rap dataset
df_rap = pd.read_csv('./datasets/df_rap.csv')
df_rap = df_rap.drop(columns=['Song', 'Artist'])
# topRap merge dataset
df_songs = pd.read_csv('./datasets/df_songs.csv')
df_songs = df_songs.drop(columns=['Song','LyricsWordCount', 'Artist'])#
# chose dataset on trainData string
if trainData == 'top':
lyrics_df = df_top
elif trainData == 'rap':
lyrics_df = df_rap
elif trainData == 'both':
lyrics_df = df_songs
else:
print('❌ --> ERROR: trainData string is not correct')
lyrics_df.head()
# %%
print('✅ --> Loaded dataset: ', trainData)
# %% [markdown]
# ---
# %% [markdown]
# ### Export test data
# %%
n = int(len(lyrics_df) * 0.10)
test_samples = lyrics_df.sample(n, random_state=0)
lyrics_df = lyrics_df.drop(test_samples.index)
# %%
test_samples["True_end_lyrics"] = ""
test_samples["Lyrics_Cut"] = ""
for row in test_samples.iterrows():
lyrics = str(row[1]['Lyrics'])
lyrics = lyrics.split()
split = int(len(lyrics) * 0.5)
lyrics_cut = lyrics[:split]
true_end_lyrics = lyrics[split:]
true_end_lyrics = " ".join(true_end_lyrics)
lyrics_cut = " ".join(lyrics_cut)
row[1]["True_end_lyrics"] = true_end_lyrics
row[1]["Lyrics_Cut"] = lyrics_cut
# %%
path_test_samples = './datasets/' + trainData + "_test_samples.csv"
test_samples.to_csv(path_test_samples)
print('✅ --> Exported test sample dataset to : ', path_test_samples)
# %% [markdown]
# ---
# %%
tokenizer = GPT2Tokenizer.from_pretrained('gpt2', bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>') #gpt2-medium
configuration = GPT2Config.from_pretrained('gpt2', output_hidden_states=False)
model = GPT2LMHeadModel.from_pretrained("gpt2", config=configuration)
model.resize_token_embeddings(len(tokenizer))
# %%
class GPT2Dataset(Dataset):
def __init__(self, txt_list, tokenizer, gpt2_type="gpt2", max_length=768):
self.tokenizer = tokenizer
self.input_ids = []
self.attn_masks = []
for txt in txt_list:
encodings_dict = tokenizer('<|startoftext|>' + str(txt) + '<|endoftext|>', truncation=True, max_length=max_length, padding="max_length")
self.input_ids.append(torch.tensor(encodings_dict['input_ids']))
self.attn_masks.append(torch.tensor(encodings_dict['attention_mask']))
def __len__(self):
return len(self.input_ids)
def __getitem__(self, idx):
return self.input_ids[idx], self.attn_masks[idx]
# %%
lyricList = lyrics_df["Lyrics"].tolist()
dataset = GPT2Dataset(lyricList, tokenizer, max_length=768)
# Split into training and validation sets
train_size = int(0.9 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
print('{:>5,} training samples'.format(train_size))
print('{:>5,} validation samples'.format(val_size))
# %%
train_dataloader = DataLoader(
train_dataset, # The training samples.
sampler = RandomSampler(train_dataset), # Select batches randomly
batch_size = BATCH_SIZE # Trains with this batch size.
)
validation_dataloader = DataLoader(
val_dataset, # The validation samples.
sampler = SequentialSampler(val_dataset), # Pull out batches sequentially.
batch_size = BATCH_SIZE # Evaluate with this batch size.
)
# %%
optimizer = AdamW(model.parameters(), lr = LEARNING_RATE, eps = EPSILION)
total_steps = len(train_dataloader) * EPOCHS
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps = WARMUP_STEPS,
num_training_steps = total_steps)
# %%
def format_time(elapsed):
return str(datetime.timedelta(seconds=int(round((elapsed)))))
# %%
print('⏳ --> Start training-loop!')
# %%
total_t0 = time.time()
training_stats = []
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
model = model.cuda()
model = model.to(device)
for epoch_i in range(0, EPOCHS):
print("")
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, EPOCHS))
print('Training...\n')
# ========================================
# Training
# ========================================
t0 = time.time()
total_train_loss = 0
model.train()
print('✅ --> Epoche', epoch_i, 'model.train done!\n')
for step, batch in enumerate(train_dataloader):
b_input_ids = batch[0].to(device)
b_labels = batch[0].to(device)
b_masks = batch[1].to(device)
model.zero_grad()
outputs = model(b_input_ids,labels=b_labels, attention_mask = b_masks, token_type_ids=None)
loss = outputs[0]
batch_loss = loss.item()
total_train_loss += batch_loss
# Get sample every x batches.
if step % sample_every == 0 and not step == 0:
elapsed = format_time(time.time() - t0)
print('✅ Batch {:>5,} of {:>5,}. Loss: {:>5,}. Elapsed: {:}.\n'.format(step, len(train_dataloader), batch_loss, elapsed))
print('⏳ --> Start evaluating model!\n')
model.eval()
print('✅ --> Done evaluating model!\n')
sample_outputs = model.generate(
bos_token_id=random.randint(1,30000),
do_sample=True,
top_k=50,
max_length = 200,
top_p=0.95,
num_return_sequences=1
)
print('✅ --> Model evaluation done!\n')
print('⏳ --> Print test-generated text!\n')
for i, sample_output in enumerate(sample_outputs):
print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))
print('✅ --> Print test-generated text done!\n')
print('⏳ --> Start training model again, in sample Loop\n')
model.train()
print('✅ --> Done training model again, in sample Loop\n')
loss.backward()
optimizer.step()
scheduler.step()
# Calculate the average loss over all of the batches.
avg_train_loss = total_train_loss / len(train_dataloader)
# Measure how long this epoch took.
training_time = format_time(time.time() - t0)
print("✅ --> Training epoch done!\n")
print("Average training loss: {0:.2f}\n".format(avg_train_loss))
print("Training epoch took: {:}\n".format(training_time))
# ========================================
# Validation
# ========================================
print('⏳ --> Start validating model!\n')
t0 = time.time()
model.eval()
total_eval_loss = 0
nb_eval_steps = 0
# Evaluate data for one epoch
for batch in validation_dataloader:
b_input_ids = batch[0].to(device)
b_labels = batch[0].to(device)
b_masks = batch[1].to(device)
with torch.no_grad():
outputs = model(b_input_ids,
# token_type_ids=None,
attention_mask = b_masks,
labels=b_labels)
loss = outputs[0]
batch_loss = loss.item()
total_eval_loss += batch_loss
avg_val_loss = total_eval_loss / len(validation_dataloader)
validation_time = format_time(time.time() - t0)
print("✅ --> Validation epoch done!\n")
print("Validation Loss: {0:.2f}\n".format(avg_val_loss))
print("Validation took: {:}".format(validation_time))
# Record all statistics from this epoch.
training_stats.append(
{
'epoch': epoch_i + 1,
'Training Loss': avg_train_loss,
'Valid. Loss': avg_val_loss,
'Training Time': training_time,
'Validation Time': validation_time
}
)
print("✅ Training complete!\n")
print("Total training took {:} (h:mm:ss)".format(format_time(time.time()-total_t0)))
print('⏳ --> Start saving model!\n')
# %%
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
output_dir = './model_save/' + trainData + '/'
# Create output directory if needed
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print("Saving model to %s" % output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
# %%
print('✅ --> Model saved!\n')
print('⏳ --> Start saving training stats!\n')
# %%
pd.set_option('precision', 2)
df_stats = pd.DataFrame(data=training_stats)
df_stats = df_stats.set_index('epoch')
#df = df.style.set_table_styles([dict(selector="th",props=[('max-width', '70px')])])
# export dataframe to csv
df_stats.to_csv('training_stats_' + trainData + '.csv')
# %%
print('✅ --> Training stats saved!\n')
print('======================================== TRAINING DONE ========================================')
# print date and time
print('Date and time:', datetime.datetime.now())