-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathsvtrv2_robustscanner.yml
134 lines (126 loc) · 3.49 KB
/
svtrv2_robustscanner.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
Global:
device: gpu
epoch_num: 20
log_smooth_window: 20
print_batch_step: 10
output_dir: ./output/rec/u14m_filter/svtrv2_robustscanner
eval_epoch_step: [0, 1]
eval_batch_step: [0, 500]
cal_metric_during_train: True
pretrained_model:
checkpoints:
use_tensorboard: false
infer_img:
# for data or label process
character_dict_path: ./tools/utils/EN_symbol_dict.txt
max_text_length: &max_text_length 25
use_space_char: False
save_res_path: ./output/rec/u14m_filter/predicts_svtrv2_robustscanner.txt
use_amp: True
Optimizer:
name: AdamW
lr: 0.00065 # for 4gpus bs256/gpu
weight_decay: 0.05
filter_bias_and_bn: True
LRScheduler:
name: OneCycleLR
warmup_epoch: 1.5 # pct_start 0.075*20 = 1.5ep
cycle_momentum: False
Architecture:
model_type: rec
algorithm: robustscanner
in_channels: 3
Transform:
Encoder:
name: SVTRv2LNConvTwo33
use_pos_embed: False
dims: [128, 256, 384]
depths: [6, 6, 6]
num_heads: [4, 8, 12]
mixer: [['Conv','Conv','Conv','Conv','Conv','Conv'],['Conv','Conv','FGlobal','Global','Global','Global'],['Global','Global','Global','Global','Global','Global']]
local_k: [[5, 5], [5, 5], [-1, -1]]
sub_k: [[1, 1], [2, 1], [-1, -1]]
last_stage: false
feat2d: True
Decoder:
name: RobustScannerDecoder
enc_outchannles: 128
hybrid_dec_rnn_layers: 2
hybrid_dec_dropout: 0
position_dec_rnn_layers: 2
mask: False
encode_value: False
max_text_length: *max_text_length
Loss:
name: ARLoss
PostProcess:
name: ARLabelDecode
Metric:
name: RecMetric
main_indicator: acc
is_filter: True
Train:
dataset:
name: RatioDataSetTVResize
ds_width: True
padding: false
data_dir_list: ['../Union14M-L-LMDB-Filtered/filter_train_challenging',
'../Union14M-L-LMDB-Filtered/filter_train_hard',
'../Union14M-L-LMDB-Filtered/filter_train_medium',
'../Union14M-L-LMDB-Filtered/filter_train_normal',
'../Union14M-L-LMDB-Filtered/filter_train_easy',
]
transforms:
- DecodeImagePIL: # load image
img_mode: RGB
- PARSeqAugPIL:
- ARLabelEncode: # Class handling label
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
sampler:
name: RatioSampler
scales: [[128, 32]] # w, h
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs: &bs 256
fix_bs: false
divided_factor: [4, 16] # w, h
is_training: True
loader:
shuffle: True
batch_size_per_card: *bs
drop_last: True
max_ratio: &max_ratio 4
num_workers: 4
Eval:
dataset:
name: RatioDataSetTVResize
ds_width: True
padding: False
data_dir_list: [
'../evaluation/CUTE80',
'../evaluation/IC13_857',
'../evaluation/IC15_1811',
'../evaluation/IIIT5k',
'../evaluation/SVT',
'../evaluation/SVTP',
]
transforms:
- DecodeImagePIL: # load image
img_mode: RGB
- ARLabelEncode: # Class handling label
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
sampler:
name: RatioSampler
scales: [[128, 32]] # w, h
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs: *bs
fix_bs: false
divided_factor: [4, 16] # w, h
is_training: False
loader:
shuffle: False
drop_last: False
batch_size_per_card: *bs
max_ratio: *max_ratio
num_workers: 4