-
Notifications
You must be signed in to change notification settings - Fork 4
/
tptp_v7_0_0_0..txt
827 lines (706 loc) · 41.6 KB
/
tptp_v7_0_0_0..txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
%----v7.0.0.0 (TPTP version.internal development number)
%------------------------------------------------------------------------------
%----README ... this header provides important meta- and usage information
%----
%----Intended uses of the various parts of the TPTP syntax are explained
%----in the TPTP technical manual, linked from www.tptp.org.
%----
%----Four kinds of separators are used, to indicate different types of rules:
%---- ::= is used for regular grammar rules, for syntactic parsing.
%---- :== is used for semantic grammar rules. These define specific values
%---- that make semantic sense when more general syntactic rules apply.
%---- ::- is used for rules that produce tokens.
%---- ::: is used for rules that define character classes used in the
%---- construction of tokens.
%----
%----White space may occur between any two tokens. White space is not specified
%----in the grammar, but there are some restrictions to ensure that the grammar
%----is compatible with standard Prolog: a <TPTP_file> should be readable with
%----read/1.
%----
%----The syntax of comments is defined by the <comment> rule. Comments may
%----occur between any two tokens, but do not act as white space. Comments
%----will normally be discarded at the lexical level, but may be processed
%----by systems that understand them (e.g., if the system comment convention
%----is followed).
%----
%----Multiple languages are defined. Depending on your need, you can implement
%----just the one(s) you need. The common rules for atoms, terms, etc, come
%----after the definitions of the languages, and mostly all needed for all the
%----languages.
%----Top of Page---------------------------------------------------------------
%----Files. Empty file is OK.
<TPTP_file> ::= <TPTP_input>*
<TPTP_input> ::= <annotated_formula> | <include>
%----Formula records
<annotated_formula> ::= <thf_annotated> | <tfx_annotated> | <tff_annotated> |
<tcf_annotated> | <fof_annotated> | <cnf_annotated> |
<tpi_annotated>
%----Future languages may include ... english | efof | tfof | mathml | ...
<tpi_annotated> ::= tpi(<name>,<formula_role>,<tpi_formula><annotations>).
<tpi_formula> ::= <fof_formula>
<thf_annotated> ::= thf(<name>,<formula_role>,<thf_formula>
<annotations>).
<tfx_annotated> ::= tfx(<name>,<formula_role>,<tfx_formula>
<annotations>).
<tff_annotated> ::= tff(<name>,<formula_role>,<tff_formula>
<annotations>).
<tcf_annotated> ::= tcf(<name>,<formula_role>,<tcf_formula>
<annotations>).
<fof_annotated> ::= fof(<name>,<formula_role>,<fof_formula>
<annotations>).
<cnf_annotated> ::= cnf(<name>,<formula_role>,<cnf_formula>
<annotations>).
<annotations> ::= ,<source><optional_info> | <null>
%----In derivations the annotated formulae names must be unique, so that
%----parent references (see <inference_record>) are unambiguous.
%----Types for problems.
%----Note: The previous <source_type> from ...
%---- <formula_role> ::= <user_role>-<source>
%----... is now gone. Parsers may choose to be tolerant of it for backwards
%----compatibility.
<formula_role> ::= <lower_word>
<formula_role> :== axiom | hypothesis | definition | assumption |
lemma | theorem | corollary | conjecture |
negated_conjecture | plain | type |
fi_domain | fi_functors | fi_predicates | unknown
%----"axiom"s are accepted, without proof. There is no guarantee that the
%----axioms of a problem are consistent.
%----"hypothesis"s are assumed to be true for a particular problem, and are
%----used like "axiom"s.
%----"definition"s are intended to define symbols. They are either universally
%----quantified equations, or universally quantified equivalences with an
%----atomic lefthand side. They can be treated like "axiom"s.
%----"assumption"s can be used like axioms, but must be discharged before a
%----derivation is complete.
%----"lemma"s and "theorem"s have been proven from the "axiom"s. They can be
%----used like "axiom"s in problems, and a problem containing a non-redundant
%----"lemma" or theorem" is ill-formed. They can also appear in derivations.
%----"theorem"s are more important than "lemma"s from the user perspective.
%----"conjecture"s are to be proven from the "axiom"(-like) formulae. A problem
%----is solved only when all "conjecture"s are proven.
%----"negated_conjecture"s are formed from negation of a "conjecture" (usually
%----in a FOF to CNF conversion).
%----"plain"s have no specified user semantics.
%----"fi_domain", "fi_functors", and "fi_predicates" are used to record the
%----domain, interpretation of functors, and interpretation of predicates, for
%----a finite interpretation.
%----"type" defines the type globally for one symbol; treat as $true.
%----"unknown"s have unknown role, and this is an error situation.
%----Top of Page---------------------------------------------------------------
%----THF formulae.
<thf_formula> ::= <thf_logic_formula> | <thf_sequent>
<thf_logic_formula> ::= <thf_binary_formula> | <thf_unitary_formula> |
<thf_type_formula> | <thf_subtype>
<thf_binary_formula> ::= <thf_binary_pair> | <thf_binary_tuple> |
<thf_binary_type>
%----Only some binary connectives can be written without ()s.
%----There's no precedence among binary connectives
<thf_binary_pair> ::= <thf_unitary_formula> <thf_pair_connective>
<thf_unitary_formula>
<thf_binary_tuple> ::= <thf_or_formula> | <thf_and_formula> |
<thf_apply_formula>
<thf_or_formula> ::= <thf_unitary_formula> <vline> <thf_unitary_formula> |
<thf_or_formula> <vline> <thf_unitary_formula>
<thf_and_formula> ::= <thf_unitary_formula> & <thf_unitary_formula> |
<thf_and_formula> & <thf_unitary_formula>
%----@ (denoting apply) is left-associative and lambda is right-associative.
%----^ [X] : ^ [Y] : f @ g (where f is a <thf_apply_formula> and g is a
%----<thf_unitary_formula>) should be parsed as: (^ [X] : (^ [Y] : f)) @ g.
%----That is, g is not in the scope of either lambda.
<thf_apply_formula> ::= <thf_unitary_formula> @ <thf_unitary_formula> |
<thf_apply_formula> @ <thf_unitary_formula>
%----<thf_unitary_formula> are in ()s or do not have a <binary_connective> at
%----the top level. Essentially, any lambda expression that "has enough ()s" to
%----be used inside a larger lambda expression. However, lambda notation might
%----not be used.
<thf_unitary_formula> ::= <thf_quantified_formula> | <thf_unary_formula> |
<thf_atom> | <thf_conditional> | <thf_let> |
<thf_tuple> | (<thf_logic_formula>)
%----All variables must be quantified
<thf_quantified_formula> ::= <thf_quantification> <thf_unitary_formula>
<thf_quantification> ::= <thf_quantifier> [<thf_variable_list>] :
<thf_variable_list> ::= <thf_variable> | <thf_variable>,<thf_variable_list>
<thf_variable> ::= <thf_typed_variable> | <variable>
<thf_typed_variable> ::= <variable> : <thf_top_level_type>
%----Unary connectives bind more tightly than binary. The negated formula
%----must be ()ed because a ~ is also a term.
<thf_unary_formula> ::= <thf_unary_connective> (<thf_logic_formula>)
<thf_atom> ::= <thf_function> | <variable> | <defined_term> |
<thf_conn_term>
%----Defined terms have TPTP specific interpretations. Note that <thf_atom>
%----allows <defined_type>s as terms, which will fail type checking. The
%----user must take care with this liberal syntax!
<thf_function> ::= <atom> | <functor>(<thf_arguments>) |
<defined_functor>(<thf_arguments>) |
<system_functor>(<thf_arguments>)
%----| <defined_type> | <defined_prop>, but they are captured by <atom> as
%----<defined_constant> as <atomic_defined_word>.
<thf_conn_term> ::= <thf_pair_connective> | <assoc_connective> |
<thf_unary_connective>
%----Note that syntactically this allows (p @ =), but for = the first
%----argument must be known to infer the type of =, so that's not
%----allowed, i.e., only (= @ p).
<thf_conditional> ::= $ite(<thf_logic_formula>,<thf_logic_formula>,
<thf_logic_formula>)
%----<thf_let> is about to be changed. Don't trust anything here.
%----The LHS of a term or formula binding must be a non-variable term that
%----is flat with pairwise distinct variable arguments, and the variables in
%----the LHS must be exactly those bound in the universally quantified variable
%----list, in the same order. Let definitions are not recursive: a non-variable
%----symbol introduced in the LHS of a let definition cannot occur in the RHS.
%----If a symbol with the same signature as the one in the LHS of the binding
%----is declared above the let expression (at the top level or in an
%----encompassing let) then it can be used in the RHS of the binding, but it is
%----not accessible in the term or formula of the let expression. Let
%----expressions can be eliminated by a simple definition expansion.
<thf_let> ::= $let(<thf_unitary_formula>,<thf_formula>)
<thf_let> :== $let(<thf_let_defns>,<thf_formula>)
<thf_let_defns> :== <thf_let_defn> | [<thf_let_defn_list>]
<thf_let_defn_list> :== <thf_let_defn> | <thf_let_defn>,<thf_let_defn_list>
<thf_let_defn> :== <thf_let_quantified_defn> | <thf_let_plain_defn>
<thf_let_quantified_defn> :== <thf_quantification> (<thf_let_plain_defn>)
<thf_let_plain_defn> :== <thf_let_defn_LHS> <assignment> <thf_formula>
<thf_let_defn_LHS> :== <constant> | <functor>(<fof_arguments>) |
<thf_tuple>
%----The <fof_arguments> must all be <variable>s, and the <thf_tuple> may
%----contain only <constant>s and <functor>(<fof_arguments>)s
%----Arguments recurse back up to formulae (this is the THF world here)
<thf_arguments> ::= <thf_formula_list>
%----A <thf_type_formula> is an assertion that the formula is in this type.
<thf_type_formula> ::= <thf_typeable_formula> : <thf_top_level_type>
<thf_typeable_formula> ::= <thf_atom> | (<thf_logic_formula>)
<thf_subtype> ::= <thf_atom> <subtype_sign> <thf_atom>
%----In a formula with role 'type', <thf_type_formula> is a global declaration
%----that <constant> is in this thf_top_level_type>, i.e., the rule is ...
<thf_type_formula> :== <constant> : <thf_top_level_type>
%----<thf_top_level_type> appears after ":", where a type is being specified
%----for a term or variable. <thf_unitary_type> includes <thf_unitary_formula>,
%----so the syntax allows just about any lambda expression with "enough"
%----parentheses to serve as a type. The expected use of this flexibility is
%----parametric polymorphism in types, expressed with lambda abstraction.
%----Mapping is right-associative: o > o > o means o > (o > o).
%----Xproduct is left-associative: o * o * o means (o * o) * o.
%----Union is left-associative: o + o + o means (o + o) + o.
<thf_top_level_type> ::= <thf_unitary_type> | <thf_mapping_type> |
<thf_apply_type>
%----Removed along with adding <thf_binary_type> to <thf_binary_formula>, for
%----TH1 polymorphic types with binary after quantification.
%---- | (<thf_binary_type>)
<thf_unitary_type> ::= <thf_unitary_formula>
<thf_apply_type> ::= <thf_apply_formula>
<thf_binary_type> ::= <thf_mapping_type> | <thf_xprod_type> |
<thf_union_type>
<thf_mapping_type> ::= <thf_unitary_type> <arrow> <thf_unitary_type> |
<thf_unitary_type> <arrow> <thf_mapping_type>
<thf_xprod_type> ::= <thf_unitary_type> <star> <thf_unitary_type> |
<thf_xprod_type> <star> <thf_unitary_type>
<thf_union_type> ::= <thf_unitary_type> <plus> <thf_unitary_type> |
<thf_union_type> <plus> <thf_unitary_type>
%----Sequents using the Gentzen arrow
<thf_sequent> ::= <thf_tuple> <gentzen_arrow> <thf_tuple> |
(<thf_sequent>)
%----By convention, []s are used for tuple of statements, {}s for tuples of
%----objects. The convention matches the requirements for <tff_tuple_formula>s
%----and <tff_tuple_term>s. Mixed THF tuples should use []s.
<thf_tuple> ::= [] | [<thf_formula_list>] |
{} | {<thf_formula_list>}
<thf_formula_list> ::= <thf_logic_formula> |
<thf_logic_formula>,<thf_formula_list>
%----New material for modal logic semantics, not integrated yet
<logic_defn_rule> :== <logic_defn_LHS> <assignment> <logic_defn_RHS>
<logic_defn_LHS> :== <logic_defn_value> | <thf_top_level_type> | <name>
<logic_defn_LHS> :== $constants | $quantification | $consequence |
$modalities
%----The $constants, $quantification, and $consequence apply to all of the
%----$modalities. Each of these may be specified only once, but not necessarily
%----all in a single annotated formula.
<logic_defn_RHS> :== <logic_defn_value> | <thf_unitary_formula>
<logic_defn_value> :== <defined_constant>
<logic_defn_value> :== $rigid | $flexible |
$constant | $varying | $cumulative | $decreasing |
$local | $global |
$modal_system_K | $modal_system_T | $modal_system_D |
$modal_system_S4 | $modal_system_S5 |
$modal_axiom_K | $modal_axiom_T | $modal_axiom_B |
$modal_axiom_D | $modal_axiom_4 | $modal_axiom_5
%----Top of Page---------------------------------------------------------------
%----TFX formulae
<tfx_formula> ::= <tfx_logic_formula> | <thf_sequent>
<tfx_logic_formula> ::= <thf_logic_formula>
% <tfx_logic_formula> ::= <thf_binary_formula> | <thf_unitary_formula> |
% <tff_typed_atom> | <tff_subtype>
%----Top of Page---------------------------------------------------------------
%----TFF formulae.
<tff_formula> ::= <tff_logic_formula> | <tff_typed_atom> |
<tff_sequent>
<tff_logic_formula> ::= <tff_binary_formula> | <tff_unitary_formula> |
<tff_subtype>
<tff_binary_formula> ::= <tff_binary_nonassoc> | <tff_binary_assoc>
<tff_binary_nonassoc> ::= <tff_unitary_formula> <binary_connective>
<tff_unitary_formula>
<tff_binary_assoc> ::= <tff_or_formula> | <tff_and_formula>
<tff_or_formula> ::= <tff_unitary_formula> <vline> <tff_unitary_formula> |
<tff_or_formula> <vline> <tff_unitary_formula>
<tff_and_formula> ::= <tff_unitary_formula> & <tff_unitary_formula> |
<tff_and_formula> & <tff_unitary_formula>
<tff_unitary_formula> ::= <tff_quantified_formula> | <tff_unary_formula> |
<tff_atomic_formula> | <tff_conditional> |
<tff_let> | (<tff_logic_formula>)
%----All variables must be quantified
<tff_quantified_formula> ::= <fof_quantifier> [<tff_variable_list>] :
<tff_unitary_formula>
<tff_variable_list> ::= <tff_variable> | <tff_variable>,<tff_variable_list>
<tff_variable> ::= <tff_typed_variable> | <variable>
<tff_typed_variable> ::= <variable> : <tff_atomic_type>
<tff_unary_formula> ::= <unary_connective> <tff_unitary_formula> |
<fof_infix_unary>
<tff_atomic_formula> ::= <fof_atomic_formula>
<tff_conditional> ::= $ite_f(<tff_logic_formula>,<tff_logic_formula>,
<tff_logic_formula>)
<tff_let> ::= $let_tf(<tff_let_term_defns>,<tff_formula>) |
$let_ff(<tff_let_formula_defns>,<tff_formula>)
%----See the commentary for <thf_let>.
<tff_let_term_defns> ::= <tff_let_term_defn> | [<tff_let_term_list>]
<tff_let_term_list> ::= <tff_let_term_defn> |
<tff_let_term_defn>,<tff_let_term_list>
<tff_let_term_defn> ::= ! [<tff_variable_list>] : <tff_let_term_defn> |
<tff_let_term_binding>
<tff_let_term_binding> ::= <fof_plain_term> = <fof_term> |
(<tff_let_term_binding>)
<tff_let_formula_defns> ::= <tff_let_formula_defn> | [<tff_let_formula_list>]
<tff_let_formula_list> ::= <tff_let_formula_defn> |
<tff_let_formula_defn>,<tff_let_formula_list>
<tff_let_formula_defn> ::= ! [<tff_variable_list>] : <tff_let_formula_defn> |
<tff_let_formula_binding>
<tff_let_formula_binding> ::= <fof_plain_atomic_formula> <=>
<tff_unitary_formula> | (<tff_let_formula_binding>)
<tff_sequent> ::= <tff_formula_tuple> <gentzen_arrow>
<tff_formula_tuple> | (<tff_sequent>)
<tff_formula_tuple> ::= [] | [<tff_formula_tuple_list>]
<tff_formula_tuple_list> ::= <tff_logic_formula> |
<tff_logic_formula>,<tff_formula_tuple_list>
%----<tff_typed_atom> can appear only at top level
<tff_typed_atom> ::= <untyped_atom> : <tff_top_level_type> |
(<tff_typed_atom>)
<tff_subtype> ::= <untyped_atom> <subtype_sign> <atom>
%----See <thf_top_level_type> for commentary.
<tff_top_level_type> ::= <tff_atomic_type> | <tff_mapping_type> |
<tf1_quantified_type> | (<tff_top_level_type>)
<tf1_quantified_type> ::= !> [<tff_variable_list>] : <tff_monotype>
<tff_monotype> ::= <tff_atomic_type> | (<tff_mapping_type>)
<tff_unitary_type> ::= <tff_atomic_type> | (<tff_xprod_type>)
<tff_atomic_type> ::= <type_constant> | <defined_type> |
<type_functor>(<tff_type_arguments>) | <variable>
<tff_type_arguments> ::= <tff_atomic_type> |
<tff_atomic_type>,<tff_type_arguments>
%----For consistency with <thf_unitary_type> (the analogue in thf),
%----<tff_atomic_type> should also allow (<tff_atomic_type>), but that causes
%----ambiguity.
<tff_mapping_type> ::= <tff_unitary_type> <arrow> <tff_atomic_type>
<tff_xprod_type> ::= <tff_unitary_type> <star> <tff_atomic_type> |
<tff_xprod_type> <star> <tff_atomic_type>
%----Top of Page---------------------------------------------------------------
%----TCF formulae.
<tcf_formula> ::= <tcf_logic_formula> | <tff_typed_atom>
<tcf_logic_formula> ::= <tcf_quantified_formula> | <cnf_formula>
<tcf_quantified_formula> ::= ! [<tff_variable_list>] : <cnf_formula>
%----Top of Page---------------------------------------------------------------
%----FOF formulae.
<fof_formula> ::= <fof_logic_formula> | <fof_sequent>
<fof_logic_formula> ::= <fof_binary_formula> | <fof_unitary_formula>
%----Future answer variable ideas | <answer_formula>
<fof_binary_formula> ::= <fof_binary_nonassoc> | <fof_binary_assoc>
%----Only some binary connectives are associative
%----There's no precedence among binary connectives
<fof_binary_nonassoc> ::= <fof_unitary_formula> <binary_connective>
<fof_unitary_formula>
%----Associative connectives & and | are in <binary_assoc>
<fof_binary_assoc> ::= <fof_or_formula> | <fof_and_formula>
<fof_or_formula> ::= <fof_unitary_formula> <vline> <fof_unitary_formula> |
<fof_or_formula> <vline> <fof_unitary_formula>
<fof_and_formula> ::= <fof_unitary_formula> & <fof_unitary_formula> |
<fof_and_formula> & <fof_unitary_formula>
%----<fof_unitary_formula> are in ()s or do not have a <binary_connective> at
%----the top level.
<fof_unitary_formula> ::= <fof_quantified_formula> | <fof_unary_formula> |
<fof_atomic_formula> | (<fof_logic_formula>)
%----All variables must be quantified
<fof_quantified_formula> ::= <fof_quantifier> [<fof_variable_list>] :
<fof_unitary_formula>
<fof_variable_list> ::= <variable> | <variable>,<fof_variable_list>
<fof_unary_formula> ::= <unary_connective> <fof_unitary_formula> |
<fof_infix_unary>
%----<fof_term> != <fof_term> is equivalent to ~ <fof_term> = <fof_term>
<fof_infix_unary> ::= <fof_term> <infix_inequality> <fof_term>
<fof_atomic_formula> ::= <fof_plain_atomic_formula> |
<fof_defined_atomic_formula> |
<fof_system_atomic_formula>
<fof_plain_atomic_formula> ::= <fof_plain_term>
<fof_plain_atomic_formula> :== <proposition> | <predicate>(<fof_arguments>)
<fof_defined_atomic_formula> ::= <fof_defined_plain_formula> |
<fof_defined_infix_formula>
<fof_defined_plain_formula> ::= <fof_defined_plain_term>
<fof_defined_plain_formula> :== <defined_proposition> |
<defined_predicate>(<fof_arguments>)
<fof_defined_infix_formula> ::= <fof_term> <defined_infix_pred> <fof_term>
%----System terms have system specific interpretations
<fof_system_atomic_formula> ::= <fof_system_term>
%----<fof_system_atomic_formula>s are used for evaluable predicates that are
%----available in particular tools. The predicate names are not controlled by
%----the TPTP syntax, so use with due care. Same for <fof_system_term>s.
%----FOF terms.
<fof_plain_term> ::= <constant> | <functor>(<fof_arguments>)
%----Defined terms have TPTP specific interpretations
<fof_defined_term> ::= <defined_term> | <fof_defined_atomic_term>
<fof_defined_atomic_term> ::= <fof_defined_plain_term>
%----None yet | <defined_infix_term>
%----None yet <defined_infix_term> ::= <fof_term> <defined_infix_func> <fof_term>
%----None yet <defined_infix_func> ::=
<fof_defined_plain_term> ::= <defined_constant> |
<defined_functor>(<fof_arguments>)
%----System terms have system specific interpretations
<fof_system_term> ::= <system_constant> | <system_functor>(<fof_arguments>)
%----Arguments recurse back to terms (this is the FOF world here)
<fof_arguments> ::= <fof_term> | <fof_term>,<fof_arguments>
%----These are terms used as arguments. Not the entry point for terms because
%----<fof_plain_term> is also used as <fof_plain_atomic_formula>. The <tff_
%----options are for only TFF, but are here because <fof_plain_atomic_formula>
%----is used in <fof_atomic_formula>, which is also used as
%----<tff_atomic_formula>.
<fof_term> ::= <fof_function_term> | <variable> |
<tff_conditional_term> | <tff_let_term> |
<tff_tuple_term>
<fof_function_term> ::= <fof_plain_term> | <fof_defined_term> |
<fof_system_term>
%----Conditional terms should be used by only TFF.
<tff_conditional_term> ::= $ite_t(<tff_logic_formula>,<fof_term>,<fof_term>)
%----Let terms should be used by only TFF. $let_ft is for use when there is
%----a $ite_t in the <fof_term>. See the commentary for $let_tf and $let_ff.
<tff_let_term> ::= $let_ft(<tff_let_formula_defns>,<fof_term>) |
$let_tt(<tff_let_term_defns>,<fof_term>)
%----<tff_tuple_term> uses {}s to disambiguate from tuples of formulae in []s.
<tff_tuple_term> ::= {} | {<fof_arguments>}
%----Top of Page---------------------------------------------------------------
%----This section is the FOFX syntax. Not yet in use.
% <fof_let> ::= := [<fof_let_list>] : <fof_unitary_formula>
% <fof_let_list> ::= <fof_defined_var> |
% <fof_defined_var>,<fof_let_list>
% <fof_defined_var> ::= <variable> := <fof_logic_formula> |
% <variable> :- <fof_term> | (<fof_defined_var>)
%
% <fof_conditional> ::= $ite_f(<fof_logic_formula>,<fof_logic_formula>,
% <fof_logic_formula>)
%
% <fof_conditional_term> ::= $ite_t(<fof_logic_formula>,<fof_term>,<fof_term>)
<fof_sequent> ::= <fof_formula_tuple> <gentzen_arrow>
<fof_formula_tuple> | (<fof_sequent>)
<fof_formula_tuple> ::= [] | [<fof_formula_tuple_list>]
<fof_formula_tuple_list> ::= <fof_logic_formula> |
<fof_logic_formula>,<fof_formula_tuple_list>
%----Top of Page---------------------------------------------------------------
%----CNF formulae (variables implicitly universally quantified)
<cnf_formula> ::= <disjunction> | (<disjunction>)
<disjunction> ::= <literal> | <disjunction> <vline> <literal>
<literal> ::= <fof_atomic_formula> | ~ <fof_atomic_formula> |
<fof_infix_unary>
%----Top of Page---------------------------------------------------------------
%----Connectives - THF
<thf_quantifier> ::= <fof_quantifier> | <th0_quantifier> |
<th1_quantifier>
%----TH0 quantifiers are also available in TH1
<th1_quantifier> ::= !> | ?*
<th0_quantifier> ::= ^ | @+ | @-
<thf_pair_connective> ::= <infix_equality> | <infix_inequality> |
<binary_connective> | <assignment>
<thf_unary_connective> ::= <unary_connective> | <th1_unary_connective>
<th1_unary_connective> ::= !! | ?? | @@+ | @@- | @=
%----Connectives - THF and TFF
<subtype_sign> ::= <<
%----Connectives - TFF
% <tff_pair_connective> ::= <binary_connective> | <assignment>
%----Connectives - FOF
<fof_quantifier> ::= ! | ?
<binary_connective> ::= <=> | => | <= | <~> | ~<vline> | ~&
<assoc_connective> ::= <vline> | &
<unary_connective> ::= ~
%----The seqent arrow
<gentzen_arrow> ::= -->
<assignment> ::= :=
%----Types for THF and TFF
<type_constant> ::= <type_functor>
<type_functor> ::= <atomic_word>
<defined_type> ::= <atomic_defined_word>
<defined_type> :== $oType | $o | $iType | $i | $tType |
$real | $rat | $int
%----$oType/$o is the Boolean type, i.e., the type of $true and $false.
%----$iType/$i is non-empty type of individuals, which may be finite or
%----infinite. $tType is the type of all types. $real is the type of <real>s.
%----$rat is the type of <rational>s. $int is the type of <signed_integer>s
%----and <unsigned_integer>s.
<system_type> :== <atomic_system_word>
%----For all language types
<atom> ::= <untyped_atom> | <defined_constant>
<untyped_atom> ::= <constant> | <system_constant>
<defined_proposition> :== <atomic_defined_word>
<defined_proposition> :== $true | $false
<defined_predicate> :== <atomic_defined_word>
<defined_predicate> :== $distinct |
$less | $lesseq | $greater | $greatereq |
$is_int | $is_rat |
$box_P | $box_i | $box_int | $box |
$dia_P | $dia_i | $dia_int | $dia
%----$distinct means that each of it's constant arguments are pairwise !=. It
%----is part of the TFF syntax. It can be used only as a fact, not under any
%----connective.
<defined_infix_pred> ::= <infix_equality> | <assignment>
<infix_equality> ::= =
<infix_inequality> ::= !=
<constant> ::= <functor>
<functor> ::= <atomic_word>
<system_constant> ::= <system_functor>
<system_functor> ::= <atomic_system_word>
<defined_constant> ::= <defined_functor>
<defined_functor> ::= <atomic_defined_word>
<defined_functor> :== $uminus | $sum | $difference | $product |
$quotient | $quotient_e | $quotient_t | $quotient_f |
$remainder_e | $remainder_t | $remainder_f |
$floor | $ceiling | $truncate | $round |
$to_int | $to_rat | $to_real
<defined_term> ::= <number> | <distinct_object>
<variable> ::= <upper_word>
%----Top of Page---------------------------------------------------------------
%----Formula sources
<source> ::= <general_term>
<source> :== <dag_source> | <internal_source> |
<external_source> | unknown | [<sources>]
%----Alternative sources are recorded like this, thus allowing representation
%----of alternative derivations with shared parts.
<sources> :== <source> | <source>,<sources>
%----Only a <dag_source> can be a <name>, i.e., derived formulae can be
%----identified by a <name> or an <inference_record>
<dag_source> :== <name> | <inference_record>
<inference_record> :== inference(<inference_rule>,<useful_info>,
<inference_parents>)
<inference_rule> :== <atomic_word>
%----Examples are deduction | modus_tollens | modus_ponens | rewrite |
% resolution | paramodulation | factorization |
% cnf_conversion | cnf_refutation | ...
%----<inference_parents> can be empty in cases when there is a justification
%----for a tautologous theorem. In case when a tautology is introduced as
%----a leaf, e.g., for splitting, then use an <internal_source>.
<inference_parents> :== [] | [<parent_list>]
<parent_list> :== <parent_info> | <parent_info>,<parent_list>
<parent_info> :== <source><parent_details>
<parent_details> :== :<general_list> | <null>
<internal_source> :== introduced(<intro_type><optional_info>)
<intro_type> :== definition | axiom_of_choice | tautology | assumption
%----This should be used to record the symbol being defined, or the function
%----for the axiom of choice
<external_source> :== <file_source> | <theory> | <creator_source>
<file_source> :== file(<file_name><file_info>)
<file_info> :== ,<name> | <null>
<theory> :== theory(<theory_name><optional_info>)
<theory_name> :== equality | ac
%----More theory names may be added in the future. The <optional_info> is
%----used to store, e.g., which axioms of equality have been implicitly used,
%----e.g., theory(equality,[rst]). Standard format still to be decided.
<creator_source> :== creator(<creator_name><optional_info>)
<creator_name> :== <atomic_word>
%----Useful info fields
<optional_info> ::= ,<useful_info> | <null>
<useful_info> ::= <general_list>
<useful_info> :== [] | [<info_items>]
<info_items> :== <info_item> | <info_item>,<info_items>
<info_item> :== <formula_item> | <inference_item> |
<general_function>
%----Useful info for formula records
<formula_item> :== <description_item> | <iquote_item>
<description_item> :== description(<atomic_word>)
<iquote_item> :== iquote(<atomic_word>)
%----<iquote_item>s are used for recording exactly what the system output about
%----the inference step. In the future it is planned to encode this information
%----in standardized forms as <parent_details> in each <inference_record>.
%----Useful info for inference records
<inference_item> :== <inference_status> | <assumptions_record> |
<new_symbol_record> | <refutation>
<inference_status> :== status(<status_value>) | <inference_info>
%----These are the success status values from the SZS ontology. The most
%----commonly used values are:
%---- thm - Every model of the parent formulae is a model of the inferred
%---- formula. Regular logical consequences.
%---- cth - Every model of the parent formulae is a model of the negation of
%---- the inferred formula. Used for negation of conjectures in FOF to
%---- CNF conversion.
%---- esa - There exists a model of the parent formulae iff there exists a
%---- model of the inferred formula. Used for Skolemization steps.
%----For the full hierarchy see the SZSOntology file distributed with the TPTP.
<status_value> :== suc | unp | sap | esa | sat | fsa | thm | eqv | tac |
wec | eth | tau | wtc | wth | cax | sca | tca | wca |
cup | csp | ecs | csa | cth | ceq | unc | wcc | ect |
fun | uns | wuc | wct | scc | uca | noc
%----<inference_info> is used to record standard information associated with an
%----arbitrary inference rule. The <inference_rule> is the same as the
%----<inference_rule> of the <inference_record>. The <atomic_word> indicates
%----the information being recorded in the <general_list>. The <atomic_word>
%----are (loosely) set by TPTP conventions, and include esplit, sr_split, and
%----discharge.
<inference_info> :== <inference_rule>(<atomic_word>,<general_list>)
%----An <assumptions_record> lists the names of assumptions upon which this
%----inferred formula depends. These must be discharged in a completed proof.
<assumptions_record> :== assumptions([<name_list>])
%----A <refutation> record names a file in which the inference recorded here
%----is recorded as a proof by refutation.
<refutation> :== refutation(<file_source>)
%----A <new_symbol_record> provides information about a newly introduced symbol.
<new_symbol_record> :== new_symbols(<atomic_word>,[<new_symbol_list>])
<new_symbol_list> :== <principal_symbol> |
<principal_symbol>,<new_symbol_list>
%----Principal symbols are predicates, functions, variables
<principal_symbol> :== <functor> | <variable>
%----Include directives
<include> ::= include(<file_name><formula_selection>).
<formula_selection> ::= ,[<name_list>] | <null>
<name_list> ::= <name> | <name>,<name_list>
%----Non-logical data
<general_term> ::= <general_data> | <general_data>:<general_term> |
<general_list>
<general_data> ::= <atomic_word> | <general_function> |
<variable> | <number> | <distinct_object> |
<formula_data>
<general_function> ::= <atomic_word>(<general_terms>)
%----A <general_data> bind() term is used to record a variable binding in an
%----inference, as an element of the <parent_details> list.
<general_data> :== bind(<variable>,<formula_data>)
<formula_data> ::= $thf(<thf_formula>) | $tff(<tff_formula>) |
$fof(<fof_formula>) | $cnf(<cnf_formula>) |
$fot(<fof_term>)
<general_list> ::= [] | [<general_terms>]
<general_terms> ::= <general_term> | <general_term>,<general_terms>
%----General purpose
<name> ::= <atomic_word> | <integer>
%----Integer names are expected to be unsigned
<atomic_word> ::= <lower_word> | <single_quoted>
%----<single_quoted> tokens do not include their outer quotes, therefore the
%----<lower_word> <atomic_word> cat and the <single_quoted> <atomic_word> 'cat'
%----are the same. Quotes must be removed from a <single_quoted> <atomic_word>
%----if doing so produces a <lower_word> <atomic_word>. Note that <numbers>s
%----and <variable>s are not <lower_word>s, so '123' and 123, and 'X' and X,
%----are different.
<atomic_defined_word> ::= <dollar_word>
<atomic_system_word> ::= <dollar_dollar_word>
<number> ::= <integer> | <rational> | <real>
%----Numbers are always interpreted as themselves, and are thus implicitly
%----distinct if they have different values, e.g., 1 != 2 is an implicit axiom.
%----All numbers are base 10 at the moment.
<file_name> ::= <single_quoted>
<null> ::=
%----Top of Page---------------------------------------------------------------
%----Rules from here on down are for defining tokens (terminal symbols) of the
%----grammar, assuming they will be recognized by a lexical scanner.
%----A ::- rule defines a token, a ::: rule defines a macro that is not a
%----token. Usual regexp notation is used. Single characters are always placed
%----in []s to disable any special meanings (for uniformity this is done to
%----all characters, not only those with special meanings).
%----These are tokens that appear in the syntax rules above. No rules
%----defined here because they appear explicitly in the syntax rules,
%----except that <vline>, <star>, <plus> denote "|", "*", "+", respectively.
%----Keywords: fof cnf thf tff include
%----Punctuation: ( ) , . [ ] :
%----Operators: ! ? ~ & | <=> => <= <~> ~| ~& * +
%----Predicates: = != $true $false
%----For lex/yacc there cannot be spaces on either side of the | here
<comment> ::- <comment_line>|<comment_block>
<comment_line> ::- [%]<printable_char>*
<comment_block> ::: [/][*]<not_star_slash>[*][*]*[/]
<not_star_slash> ::: ([^*]*[*][*]*[^/*])*[^*]*
%----Defined comments are a convention used for annotations that are used as
%----additional input for systems. They look like comments, but start with %$
%----or /*$. A wily user of the syntax can notice the $ and extract information
%----from the "comment" and pass that on as input to the system. They are
%----analogous to pragmas in programming languages. To extract these separately
%----from regular comments, the rules are:
%---- <defined_comment> ::- <def_comment_line>|<def_comment_block>
%---- <def_comment_line> ::: [%]<dollar><printable_char>*
%---- <def_comment_block> ::: [/][*]<dollar><not_star_slash>[*][*]*[/]
%----A string that matches both <defined_comment> and <comment> should be
%----recognized as <defined_comment>, so put these before <comment>.
%----Defined comments that are in use include:
%---- TO BE ANNOUNCED
%----System comments are a convention used for annotations that may used as
%----additional input to a specific system. They look like comments, but start
%----with %$$ or /*$$. A wily user of the syntax can notice the $$ and extract
%----information from the "comment" and pass that on as input to the system.
%----The specific system for which the information is intended should be
%----identified after the $$, e.g., /*$$Otter 3.3: Demodulator */
%----To extract these separately from regular comments, the rules are:
%---- <system_comment> ::- <sys_comment_line>|<sys_comment_block>
%---- <sys_comment_line> ::: [%]<dollar><dollar><printable_char>*
%---- <sys_comment_block> ::: [/][*]<dollar><dollar><not_star_slash>[*][*]*[/]
%----A string that matches both <system_comment> and <defined_comment> should
%----be recognized as <system_comment>, so put these before <defined_comment>.
<single_quoted> ::- <single_quote><sq_char><sq_char>*<single_quote>
%----<single_quoted>s contain visible characters. \ is the escape character for
%----' and \, i.e., \' is not the end of the <single_quoted>.
%----The token does not include the outer quotes, e.g., 'cat' and cat are the
%----same. See <atomic_word> for information about stripping the quotes.
<distinct_object> ::- <double_quote><do_char>*<double_quote>
%---Space and visible characters upto ~, except " and \
%----<distinct_object>s contain visible characters. \ is the escape character
%----for " and \, i.e., \" is not the end of the <distinct_object>.
%----<distinct_object>s are different from (but may be equal to) other tokens,
%----e.g., "cat" is different from 'cat' and cat. Distinct objects are always
%----interpreted as themselves, so if they are different they are unequal,
%----e.g., "Apple" != "Microsoft" is implicit.
<dollar_word> ::- <dollar><lower_word>
<dollar_dollar_word> ::- <dollar><dollar><lower_word>
<upper_word> ::- <upper_alpha><alpha_numeric>*
<lower_word> ::- <lower_alpha><alpha_numeric>*
%----Tokens used in syntax, and cannot be character classes
<vline> ::- [|]
<star> ::- [*]
<plus> ::- [+]
<arrow> ::- [>]
<less_sign> ::- [<]
%----Numbers. Signs are made part of the same token here.
<real> ::- (<signed_real>|<unsigned_real>)
<signed_real> ::- <sign><unsigned_real>
<unsigned_real> ::- (<decimal_fraction>|<decimal_exponent>)
<rational> ::- (<signed_rational>|<unsigned_rational>)
<signed_rational> ::- <sign><unsigned_rational>
<unsigned_rational> ::- <decimal><slash><positive_decimal>
<integer> ::- (<signed_integer>|<unsigned_integer>)
<signed_integer> ::- <sign><unsigned_integer>
<unsigned_integer> ::- <decimal>
<decimal> ::- (<zero_numeric>|<positive_decimal>)
<positive_decimal> ::- <non_zero_numeric><numeric>*
<decimal_exponent> ::- (<decimal>|<decimal_fraction>)<exponent><exp_integer>
<decimal_fraction> ::- <decimal><dot_decimal>
<dot_decimal> ::- <dot><numeric><numeric>*
<exp_integer> ::- (<signed_exp_integer>|<unsigned_exp_integer>)
<signed_exp_integer> ::- <sign><unsigned_exp_integer>
<unsigned_exp_integer> ::- <numeric><numeric>*
%----Character classes
<percentage_sign> ::: [%]
<double_quote> ::: ["]
<do_char> ::: ([\40-\41\43-\133\135-\176]|[\\]["\\])
<single_quote> ::: [']
%---Space and visible characters upto ~, except ' and \
<sq_char> ::: ([\40-\46\50-\133\135-\176]|[\\]['\\])
<sign> ::: [+-]
<dot> ::: [.]
<exponent> ::: [Ee]
<slash> ::: [/]
<zero_numeric> ::: [0]
<non_zero_numeric> ::: [1-9]
<numeric> ::: [0-9]
<lower_alpha> ::: [a-z]
<upper_alpha> ::: [A-Z]
<alpha_numeric> ::: (<lower_alpha>|<upper_alpha>|<numeric>|[_])
<dollar> ::: [$]
<printable_char> ::: .
%----<printable_char> is any printable ASCII character, codes 32 (space) to 126
%----(tilde). <printable_char> does not include tabs, newlines, bells, etc. The
%----use of . does not not exclude tab, so this is a bit loose.
<viewable_char> ::: [.\n]
%----Top of Page---------------------------------------------------------------