-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathlearn_turbulent_flow.py
190 lines (151 loc) · 6.08 KB
/
learn_turbulent_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import torch
from torch.utils.data import DataLoader, TensorDataset
from tqdm import tqdm
from utils import (
import_interpolators, maybe_mkdir
)
def normalize_dataset(x, y, mean, std):
mean_vals_x = mean['x']
std_vals_x = std['x']
x = (x - mean_vals_x) / std_vals_x
mean_vals_y = mean['y']
std_vals_y = std['y']
y = (y - mean_vals_y) / std_vals_y
return x, y
def get_dataset_stats(x, y):
mean_vals_x = np.mean(x, axis=0)
std_vals_x = np.std(x, axis=0)
mean_vals_y = np.mean(y, axis=0)
std_vals_y = np.std(y, axis=0)
mean = {"x": mean_vals_x, "y": mean_vals_y}
std = {"x": std_vals_x, "y": std_vals_y}
return mean, std
def generate_dataset(fU, fV, T, ngrid):
N = len(fU)
Xgrid, Ygrid = np.meshgrid(np.linspace(-0.9, 7.9, ngrid), np.linspace(-1.9, 1.9, ngrid))
X = np.zeros((N * (ngrid * ngrid), 3))
Y = np.zeros((N * (ngrid * ngrid), 2))
cont = 0
for t in tqdm(range(0, N), desc="Generating dataset", disable=False):
for i in range(ngrid):
for j in range(ngrid):
u = np.squeeze(fU[t]([Xgrid[i, j], Ygrid[i, j]]))
v = np.squeeze(fV[t]([Xgrid[i, j], Ygrid[i, j]]))
X[cont, :] = np.array([t * T / (N - 1), Xgrid[i, j], Ygrid[i, j]]) #
Y[cont, :] = np.array([u, v])
cont += 1
return X, Y
def generate_val_dataset(fU, fV, T, ngrid):
N = len(fU)
Xgrid, Ygrid = np.meshgrid(np.random.uniform(-0.9, 7.9, size=(ngrid,)), np.random.uniform(-1.9, 1.9, size=(ngrid,)))
X = np.zeros((N * (ngrid * ngrid), 3))
Y = np.zeros((N * (ngrid * ngrid), 2))
cont = 0
for t in tqdm(range(0, N), desc="Generating dataset", disable=False):
for i in range(ngrid):
for j in range(ngrid):
u = np.squeeze(fU[t]([Xgrid[i, j], Ygrid[i, j]]))
v = np.squeeze(fV[t]([Xgrid[i, j], Ygrid[i, j]]))
X[cont, :] = np.array([t * T / (N - 1), Xgrid[i, j], Ygrid[i, j]]) #
Y[cont, :] = np.array([u, v])
cont += 1
return X, Y
def train():
file_name = "turbolent_flow_model.pt"
maybe_mkdir("./models/")
# Problem specific parameters
T = 20
ngrid_train = 200
ngrid_valid = ngrid_train
# Learning parameters
n_epochs = 10
layer_size = 256
learning_rate = 1e-3
batch_size = 1024
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --------------------- Import ground truth interpolators -------------------- #
print("Importing velocity field interpolators...")
fU, fV = import_interpolators()
N = len(fU)
print("Done.\n")
# ----------------------------- Generate datasets ---------------------------- #
print("Generating training dataset...")
x, y = generate_dataset(
fU=fU, fV=fV, T=T, ngrid=ngrid_train
)
mean, std = get_dataset_stats(x, y)
x, y = normalize_dataset(x, y, mean, std)
dataset_train = TensorDataset(torch.from_numpy(x).float(), torch.from_numpy(y).float())
dataloader_train = DataLoader(dataset_train, batch_size=batch_size, shuffle=True)
print("Generating validation dataset...")
x, y = generate_val_dataset(
fU=fU, fV=fV, T=T, ngrid=ngrid_valid
)
x, y = normalize_dataset(x, y, mean, std)
dataset_valid = TensorDataset(torch.from_numpy(x).float(), torch.from_numpy(y).float())
dataloader_valid = DataLoader(dataset_valid, batch_size=batch_size, shuffle=True)
# ----------------------------------- Model ---------------------------------- #
model = torch.nn.Sequential(
torch.nn.Linear(3, layer_size),
torch.nn.GELU(),
torch.nn.Linear(layer_size, layer_size),
torch.nn.GELU(),
torch.nn.Linear(layer_size, layer_size),
torch.nn.GELU(),
torch.nn.Linear(layer_size, 2),
)
# ------------------------ Optimizer and loss function ----------------------- #
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-5)
loss_func = torch.nn.L1Loss()
val_loss_func = torch.nn.L1Loss()
n_train = ngrid_train * ngrid_train * N
n_train_iter = int(np.ceil(n_train / batch_size))
model = model.to(device)
n_steps = 0
for epoch in range(n_epochs):
# --------------------------------- Training --------------------------------- #
model.train()
progress = tqdm(dataloader_train)
for i, (X_tr, Y_tr) in enumerate(progress):
X_tr = X_tr.to(device)
Y_tr = Y_tr.to(device)
# train step
optimizer.zero_grad() # clear the gradients
y_pred = model(X_tr) # forward pass
loss = loss_func(y_pred, Y_tr) # calculate loss
loss.backward() # backward pass
optimizer.step()
train_loss = loss.item() # extract loss
# log statistics
progress.set_description(f"Epoch {epoch+1}/{n_epochs}, Train Loss {train_loss:.4f}")
n_steps += 1
if epoch % 2 != 0:
continue
# -------------------------------- Validation -------------------------------- #
model.eval()
val_losses = []
progress = tqdm(dataloader_valid)
with torch.no_grad():
for i, (x_valid, y_valid) in enumerate(progress):
x_valid = x_valid.to(device)
y_valid = y_valid.to(device)
# valid step
y_pred = model(x_valid) # forward pass
loss = val_loss_func(y_pred, y_valid) # calculate loss
valid_loss = loss.item() # extract loss
val_losses.append(valid_loss)
# print statistics
progress.set_description(f"Epoch {epoch+1}/{n_epochs}, Val Loss {valid_loss:.6f}")
# save model
checkpoint = {
"model": model,
"mean": mean,
"std": std,
}
torch.save(
checkpoint, "./models/" + file_name
)
if __name__ == '__main__':
torch.manual_seed(123)
train()