-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdataset.py
111 lines (98 loc) · 4.09 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import csv
import torch
import time
import itertools
import numpy as np
from config import DefaultConfig
from wordtest import WordTestResource
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from prefetch_generator import BackgroundGenerator
opt = DefaultConfig()
class Data(Dataset):
def __init__(self, train=True):
start_time = time.time()
if train:
fileName = opt.train_data
else:
fileName = opt.test_data
self.students = []
self.max_skill_num = 0
begin_index = 1e9
with open(fileName, "r") as csvfile:
for num_ques, ques, ans in itertools.zip_longest(*[csvfile] * 3):
num_ques = int(num_ques.strip().strip(','))
ques = [int(q) for q in ques.strip().strip(',').split(',')]
ans = [int(a) for a in ans.strip().strip(',').split(',')]
tmp_max_skill = max(ques)
tmp_min_skill = min(ques)
begin_index = min(tmp_min_skill, begin_index)
self.max_skill_num = max(tmp_max_skill, self.max_skill_num)
if (num_ques <= 2):
continue
elif num_ques <= opt.max_len:
problems = np.zeros(opt.max_len, dtype=np.int64)
correct = np.ones(opt.max_len, dtype=np.int64)
problems[-num_ques:] = ques[-num_ques:]
correct[-num_ques:] = ans[-num_ques:]
self.students.append((num_ques, problems, correct))
else:
start_idx = 0
while opt.max_len + start_idx <= num_ques:
problems = np.array(ques[start_idx:opt.max_len + start_idx])
correct = np.array(ans[start_idx:opt.max_len + start_idx])
tup = (opt.max_len, problems, correct)
start_idx += opt.max_len
self.students.append(tup)
left_num_ques = num_ques - start_idx
problems = np.zeros(opt.max_len, dtype=np.int64)
correct = np.ones(opt.max_len, dtype=np.int64)
problems[-left_num_ques:] = ques[start_idx:]
correct[-left_num_ques:] = ans[start_idx:]
tup = (left_num_ques, problems, correct)
self.students.append(tup)
def __getitem__(self, index):
student = self.students[index]
problems = student[1]
correct = student[2]
x = np.zeros(opt.max_len - 1)
x = problems[:-1]
# we assume max_skill_num + 1 = num_skills because skill index starts from 0 to max_skill_num
x += (correct[:-1] == 1) * (self.max_skill_num + 1)
problems = problems[1:]
correct = correct[1:]
return x, problems, correct
def __len__(self):
return len(self.students)
class DataLoaderX(DataLoader):
def __iter__(self):
return BackgroundGenerator(super().__iter__())
class DataPrefetcher():
def __init__(self, loader, device):
self.loader = iter(loader)
self.device = device
self.stream = torch.cuda.Stream()
# With Amp, it isn't necessary to manually convert data to half.
# if args.fp16:
# self.mean = self.mean.half()
# self.std = self.std.half()
self.preload()
def preload(self):
try:
self.batch = next(self.loader)
except StopIteration:
self.batch = None
return
with torch.cuda.stream(self.stream):
for k in range(len(self.batch)):
self.batch[k] = self.batch[k].to(device=self.device, non_blocking=True)
# With Amp, it isn't necessary to manually convert data to half.
# if args.fp16:
# self.next_input = self.next_input.half()
# else:
# self.next_input = self.next_input.float()
def next(self):
torch.cuda.current_stream().wait_stream(self.stream)
batch = self.batch
self.preload()
return batch