-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgpt_modeling_base.py
236 lines (193 loc) · 9.18 KB
/
gpt_modeling_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import torch
import numpy as np
import pytorch_lightning as pl
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModelForCausalLM, GPT2Config, GPT2LMHeadModel, GPT2Tokenizer
from base_model import BaseModel
from typing import Dict
class GPT2BaseModel(BaseModel):
"""
initiates a PyTorch Lightning GPT2 base model, defines basic training and evaluation steps, offer custom train/valid/test step function for specific tasks
"""
@staticmethod
def add_model_specific_args(parent_parser):
return parent_parser
def __init__(self, args, model=None, tokenizer=None):
super().__init__(args)
if model is None:
model = AutoModelForCausalLM.from_pretrained("gpt2")
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained("gpt2")
self.model = model
self.tokenizer = tokenizer
def get_inputs(self, batch):
inputs = {
'input_ids': batch['input_ids'],
'attention_mask': batch['attention_mask'],
'labels': batch['labels'],
}
return inputs
def forward(self, input_ids, attention_mask, labels=None):
""" forward step """
output = self.model(
input_ids,
attention_mask=attention_mask,
labels=labels,
)
return output.loss, output.logits
def training_step(self, batch, batch_idx):
""" training step """
inputs = self.get_inputs(batch)
input_ids = inputs["input_ids"]
batch_size = input_ids.size(0)
self._consumed_samples += batch_size * max(self.trainer.gpus, 1) # batch size * data parallel size
labels = inputs["labels"]
if labels is not None:
self._consumed_tokens += len(labels.flatten()) * max(self.trainer.gpus, 1)
else:
self._consumed_tokens += len(input_ids.flatten()) * max(self.trainer.gpus, 1)
loss, logits = self(**inputs)
if labels is not None and self.hparams.show_training_ex > -1 and batch_idx % self.hparams.show_training_ex == 0:
self.show_training_example(input_ids=input_ids[0], labels=labels[0], logits=logits[0])
self.log("train_loss_step", loss, prog_bar=True, logger=True, on_step=True, batch_size=batch_size)
ts_logger = self.logger.experiment
ts_logger.add_scalar("train_loss_vs_samples", loss.item(), self._consumed_samples)
ts_logger.add_scalar("train_loss_vs_tokens", loss.item(), self._consumed_tokens)
# Do custom things for your task
custom_output_dict = self.custom_training_step(batch, batch_idx, logits)
output_dict = {"loss": loss}
if custom_output_dict is not None:
output_dict.update(custom_output_dict)
# current_step = self.trainer.lr_schedulers[0]['scheduler']._step_count
return output_dict
def validation_step(self, batch, batch_idx):
""" validation step """
inputs = self.get_inputs(batch)
batch_size = inputs["input_ids"].size(0)
loss, logits = self(**inputs)
self.log("val_loss", loss, prog_bar=False, logger=True, on_step=True, batch_size=batch_size)
# Do custom things for your task
custom_output_dict = self.custom_validation_step(batch, batch_idx, logits)
output_dict = {"loss": loss}
if custom_output_dict is not None:
output_dict.update(custom_output_dict)
return output_dict
def validation_epoch_end(self, validation_step_outputs):
_loss = [x['loss'].cpu() for x in validation_step_outputs]
self.average_validation_loss = np.round(
torch.mean(torch.stack(_loss)).item(),
4,
)
self.log("avg_val_loss", self.average_validation_loss, prog_bar=False, logger=True, on_epoch=True)
ts_logger = self.logger.experiment
ts_logger.add_scalar("val_loss_vs_samples", self.average_validation_loss, self._consumed_samples)
self.custom_validation_epoch_end(validation_step_outputs)
def test_step(self, batch, batch_idx):
""" test step """
inputs = self.get_inputs(batch)
batch_size = inputs["input_ids"].size(0)
loss, logits = self(**inputs)
self.log("test_loss", loss, prog_bar=False, logger=True, on_step=True, batch_size=batch_size)
custom_output_dict = self.custom_test_step(batch, batch_idx, logits)
output_dict = {"loss": loss}
if custom_output_dict is not None:
output_dict.update(custom_output_dict)
return output_dict
def test_epoch_end(self, test_step_outputs):
_loss = [x['loss'].cpu() for x in test_step_outputs]
self.average_test_loss = np.round(
torch.mean(torch.stack(_loss)).item(),
4,
)
self.log("avg_test_loss", self.average_test_loss, prog_bar=True, logger=True, on_epoch=True)
ts_logger = self.logger.experiment
ts_logger.add_scalar("test_loss_vs_samples", self.average_test_loss, self._consumed_samples)
self.custom_test_epoch_end(test_step_outputs)
@classmethod
def from_pretrained(cls, args) -> pl.LightningModule:
model = AutoModelForCausalLM.from_pretrained(args.model_name, return_dict=True)
tokenizer = AutoTokenizer.from_pretrained(args.model_name, use_fast=True)
return cls(args, model=model, tokenizer=tokenizer)
def show_training_example(self, input_ids, labels, logits):
prediction = torch.argmax(logits, dim=-1) # (seq_len, vocab_size)
assert input_ids.size() == labels.size() == prediction.size() # (seq_len, )
input_tokens = self.tokenizer.decode(input_ids, skip_special_tokens=True)
predicted_tokens = self.tokenizer.decode(prediction, skip_special_tokens=True)
# predicted_tokens = self.tokenizer.convert_ids_to_tokens(prediction)
# if self.tokenizer.eos_token is not None and self.tokenizer.eos_token in predicted_tokens:
# predicted_tokens = predicted_tokens[:predicted_tokens.index(self.tokenizer.eos_token)]
# predicted_tokens = self.tokenizer.convert_tokens_to_string(predicted_tokens)
labels = torch.where(labels != -100, labels, self.tokenizer.pad_token_id)
labels_tokens = self.tokenizer.decode(labels, skip_special_tokens=True)
print('-' * 50)
print('input_token: ', input_tokens)
print('-' * 50)
print('predicted_tokens:', predicted_tokens)
print('-' * 50)
print('labels_tokens: ', labels_tokens)
print('-' * 50)
def inference(
self,
source_texts,
max_length: int = 512,
num_return_sequences: int = 1,
num_beams: int = 1,
top_k: int = 50,
top_p: float = 0.9,
do_sample: bool = False,
repetition_penalty: float = None,
no_repeat_ngram_size: int = None,
length_penalty: float = None,
early_stopping: bool = True,
skip_special_tokens: bool = True,
):
"""
generates prediction for model
Args:
source_texts (list[str]): sequence of texts for generating predictions
max_length (int, optional): max token length of prediction. Defaults to 512.
num_return_sequences (int, optional): number of predictions to be returned. Defaults to 1.
num_beams (int, optional): number of beams. Defaults to 1.
top_k (int, optional): Defaults to 50.
top_p (float, optional): Defaults to 0.9.
do_sample (bool, optional): Defaults to True.
repetition_penalty (float, optional): Defaults not used.
no_repeat_ngram_size (int, optional): Defaults not used.
length_penalty (float, optional): Defaults not used.
early_stopping (bool, optional): Defaults to True.
skip_special_tokens (bool, optional): Defaults to True.
Returns:
list[str]: returns predictions
"""
input_ids = self.tokenizer(
source_texts,
return_tensors="pt",
add_special_tokens=True,
padding=True,
).input_ids
input_ids = input_ids.to(self.model.device)
generated_ids = self.model.generate(
input_ids=input_ids,
num_beams=num_beams,
max_length=max_length,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
early_stopping=early_stopping,
top_p=top_p,
top_k=top_k,
num_return_sequences=num_return_sequences,
)
# if num_return_sequences>1, then batch_decode returns batch_size * num_return_sequences results
predictions = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=skip_special_tokens)
return predictions
def custom_training_step(self, batch, batch_idx, logits) -> Dict:
pass
def custom_training_epoch_end(self, validation_step_outputs):
pass
def custom_validation_step(self, batch, batch_idx, logits) -> Dict:
pass
def custom_validation_epoch_end(self, validation_step_outputs):
pass
def custom_test_step(self, batch, batch_idx, logits) -> Dict:
pass
def custom_test_epoch_end(self, test_step_outputs):
pass