forked from lvyilin/BaikeNRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_process_cnssnn_desc2.py
216 lines (188 loc) · 7.75 KB
/
data_process_cnssnn_desc2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# 加上desc的所在位置,
import json
import mxnet as mx
from gensim.models import KeyedVectors
import numpy as np
import os
CWD = os.getcwd()
WORDVEC = os.path.join(CWD, "wordvectors.kv")
CORPUS_TRAIN = os.path.join(CWD, "corpus_train_id.txt")
CORPUS_TEST = os.path.join(CWD, "corpus_test_id.txt")
DIMENSION = 100
POS_DIMENSION = 5
FIXED_WORD_LENGTH = 60
TRAIN_RADIO = 0.7
wordvec = KeyedVectors.load(WORDVEC, mmap='r')
PLACEHOLDER = np.zeros(DIMENSION)
POS_VECTOR = np.random.random((FIXED_WORD_LENGTH * 2, POS_DIMENSION))
entityvec_key = []
entityvec_value = np.load('entity2vec_value.npy')
desc_key = []
descvec_value = np.load("desc2vec_value.npy")
with open("desc2vec_key.txt", "r", encoding="utf8") as f:
for line in f:
desc_key.append(line.strip())
descvec_key = [wordvec[k] for k in desc_key]
with open("entity2vec_key.txt", "r", encoding="utf8") as f:
for line in f:
entityvec_key.append(line.strip())
def get_entity_vec(entity_name):
if entity_name in wordvec:
return wordvec[entity_name]
else:
return PLACEHOLDER
def get_entity_desc(entity_name):
if entity_name in desc_key:
idx = desc_key.index(entity_name)
return descvec_value[idx]
else:
return np.zeros(descvec_value[0].shape)
def get_entity_edge_vec(entity_name):
if entity_name in entityvec_key:
idx = entityvec_key.index(entity_name)
return entityvec_value[idx]
else:
return np.zeros(entityvec_value[0].shape)
for corpus, save_filename in ((CORPUS_TRAIN, "data_train_cnssnn_id_desc.npy"),
(CORPUS_TEST, "data_test_cnssnn_id_desc.npy")):
output_idx = []
output_entity_pos = []
output_relative_pos = []
output_sentence = []
output_relation = []
output_en1_vec = []
output_en2_vec = []
output_en_pair = []
output_en1_desc = []
output_en2_desc = []
with open(corpus, "r", encoding="utf8") as f:
for line in f:
content = line.strip().split()
idx = int(content[0])
entity_a = content[1]
entity_b = content[2]
relation = int(content[3])
sentence = content[4:]
sentence_vector = []
entity_pos = []
relative_pos = []
entity_a_pos_list = [] # 取实体a与实体b最接近的位置
entity_b_pos_list = []
entity_a_pos = -1
entity_b_pos = -1
for i in range(len(sentence)):
if sentence[i] == entity_a:
entity_a_pos_list.append(i)
# entity_a_pos = i
if sentence[i] == entity_b:
entity_b_pos_list.append(i)
# entity_b_pos = i
if sentence[i] not in wordvec:
word_vector = PLACEHOLDER
else:
word_vector = wordvec[sentence[i]]
sentence_vector.append(word_vector)
d_pos = FIXED_WORD_LENGTH
for i in entity_a_pos_list:
for j in entity_b_pos_list:
if abs(i - j) < d_pos:
d_pos = abs(i - j)
entity_a_pos = i
entity_b_pos = j
exception_flag = False
if entity_a_pos == -1 or entity_b_pos == -1:
print(
"entity not found: (%s, %d) (%s, %d) @%s" % (
entity_a, entity_a_pos, entity_b, entity_b_pos, sentence))
exception_flag = True
if entity_a_pos < entity_b_pos:
entity_pos.append([entity_a_pos, entity_b_pos])
elif entity_a_pos > entity_b_pos:
entity_pos.append([entity_b_pos, entity_a_pos])
else:
print(
"entity equal: (%s, %d) (%s, %d) @%s" % (entity_a, entity_a_pos, entity_b, entity_b_pos, sentence))
exception_flag = True
# exit(1)
if exception_flag:
# if relation == -1:
# continue
exit(1)
for i in range(len(sentence)):
relative_vector_entity_a = POS_VECTOR[i - entity_a_pos, :]
relative_vector_entity_b = POS_VECTOR[i - entity_b_pos, :]
pos_vec = np.concatenate((relative_vector_entity_a, relative_vector_entity_b))
relative_pos.append(pos_vec)
if len(sentence_vector) < FIXED_WORD_LENGTH:
for i in range(FIXED_WORD_LENGTH - len(sentence_vector)):
sentence_vector.append(PLACEHOLDER)
pos_vec = np.concatenate((POS_VECTOR[FIXED_WORD_LENGTH, :], POS_VECTOR[FIXED_WORD_LENGTH, :]))
relative_pos.append(pos_vec)
output_idx.append(idx)
output_sentence.append(sentence_vector)
output_relation.append(relation)
output_entity_pos.append(entity_pos)
output_relative_pos.append(relative_pos)
output_en1_vec.append(get_entity_edge_vec(entity_a))
output_en2_vec.append(get_entity_edge_vec(entity_b))
output_en_pair.append(np.concatenate((get_entity_vec(entity_a), get_entity_vec(entity_b))))
output_en1_desc.append(get_entity_desc(entity_a))
output_en2_desc.append(get_entity_desc(entity_b))
print("length of output_sentence: %d" % len(output_sentence))
np_idx = np.array(output_idx, dtype=int)
np_sentence = np.array(output_sentence, dtype=float)
np_relation = np.array(output_relation, dtype=int)
np_entity_pos = np.array(output_entity_pos, dtype=int)
np_relative_pos = np.array(output_relative_pos, dtype=float)
np_en1_edge_vec = np.array(output_en1_vec, dtype=float)
np_en2_edge_vec = np.array(output_en2_vec, dtype=float)
np_en_pair = np.array(output_en_pair, dtype=float)
np_en1_desc = np.array(output_en1_desc, dtype=float)
np_en2_desc = np.array(output_en2_desc, dtype=float)
print(np_sentence.shape)
print(np_relative_pos.shape)
print(np_entity_pos.shape)
print(np_en1_edge_vec.shape)
print(np_en2_edge_vec.shape)
print(np_en_pair.shape)
print(np_en1_desc.shape)
print(np_en2_desc.shape)
np_entity_edge_vec = np.concatenate((np_en1_edge_vec, np_en2_edge_vec), axis=1)
np_entity_desc = np.concatenate((np_en1_desc.reshape(np_en1_desc.shape[0], -1),
np_en2_desc.reshape(np_en2_desc.shape[0], -1)), axis=1)
print(np_entity_desc.shape)
np_sentence_matrix = np.concatenate((np_sentence, np_relative_pos), axis=2)
print(np_sentence_matrix.shape)
sentence_vec = np_sentence_matrix.reshape(np_sentence_matrix.shape[0],
(DIMENSION + 2 * POS_DIMENSION) * FIXED_WORD_LENGTH)
entity_pos_vec = np_entity_pos.reshape(np_entity_pos.shape[0], 2)
# relation + entity position + sentence_vec
conc = np.concatenate(
(np.expand_dims(np_relation, axis=1),
np.expand_dims(np_idx, axis=1),
entity_pos_vec,
np_en_pair,
np_entity_desc,
sentence_vec,
np_entity_edge_vec
),
axis=1)
print(conc.shape)
tag_1 = conc[conc[:, 0] == 1]
tag_2 = conc[conc[:, 0] == 2]
tag_3 = conc[conc[:, 0] == 3]
tag_4 = conc[conc[:, 0] == 4]
tag_5 = conc[conc[:, 0] == 5]
tag_6 = conc[conc[:, 0] == 6]
tag_7 = conc[conc[:, 0] == 7]
tag_8 = conc[conc[:, 0] == 8]
tag_9 = conc[conc[:, 0] == 9]
tag_10 = conc[conc[:, 0] == 10]
tag_0 = conc[conc[:, 0] == -1]
tag_0[:, 0] = 0
filter = np.concatenate((
tag_1, tag_2, tag_3, tag_4, tag_5, tag_6, tag_7,
tag_8, tag_9, tag_10, tag_0), axis=0)
print(filter.shape)
np.random.shuffle(filter)
np.save(save_filename, filter)