-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbiopeter.R
74 lines (65 loc) · 2.74 KB
/
biopeter.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/Rscript
# Load Command Line options and parse them into options
source("R/cli_options.R")
# Load lib
source("R/lib.R")
source("R/rules2df.R")
# Load libraries
library("arules")
library("methods")
# If patterns are specified manually via file
if(!is.null(options$`patterns-file`)) {
# If the file already contains regexp patterns
if(options$`regex-patterns`)
patterns <- readLines(file(options$`patterns-file`, "r"))
else
patterns <- xyn_patterns_to_regex(readLines(file(options$`patterns-file`, "r")))
} else {
# XYn patterns should be generated.
# Select amino acids
## Set left and right to options$aa
aa_left <- strsplit(options$aa, "")[[1]]
aa_right <- strsplit(options$aa, "")[[1]]
## If specific right or left aas are given, overwrite
if(!is.null(options$`aa-left`)) {
aa_left <- strsplit(options$`aa-left`, "")[[1]]
}
if(!is.null(options$`aa-right`)) {
aa_right <- strsplit(options$`aa-right`, "")[[1]]
}
# Generate patterns
patterns <- xyn_patterns_to_regex(generate_xyn_patterns(aa_left, aa_right, options$`n-min`:options$`n-max`))
}
# Generate transactions
transactions <- create_transactions(parse_multifasta_file(file), patterns)
rm(patterns)
if(options$`explore`) {
source("R/explorer.R")
launchExplorer(transactions, supp=options$support, conf=options$confidence)
} else {
# Apply apriori algorithm and output results
rules <- apriori(transactions,
parameter = list(supp = options$support,
conf = options$confidence,
maxlen = options$maxlen))
quality(rules)$conviction <- interestMeasure(rules, measure='conviction', transactions=transactions)
quality(rules)$hyperConfidence <- interestMeasure(rules, measure='hyperConfidence', transactions=transactions)
quality(rules)$cosine <- interestMeasure(rules, measure='cosine', transactions=transactions)
quality(rules)$chiSqurulese <- interestMeasure(rules, measure='chiSquare', transactions=transactions)
quality(rules)$coverage <- interestMeasure(rules, measure='coverage', transactions=transactions)
quality(rules)$doc <- interestMeasure(rules, measure='doc', transactions=transactions)
quality(rules)$gini <- interestMeasure(rules, measure='gini', transactions=transactions)
quality(rules)$hyperLift <- interestMeasure(rules, measure='hyperLift', transactions=transactions)
rulesdf <- rules2df(rules)
rm(transactions, rules)
if(!is.null(options$`outfile`)) {
write.csv(rulesdf, file=options$`outfile`, quote=T)
} else {
print(rulesdf)
}
}
### NOTES/UNFINISHED/BLABLABLA ###
#rules = switch(options$algorithm,
# apriori = apriori(transactions),
# eclat = ruleInduction(eclat(transactions))
# )