Skip to content

Latest commit

 

History

History
467 lines (318 loc) · 15.2 KB

README.rst

File metadata and controls

467 lines (318 loc) · 15.2 KB
https://travis-ci.org/laughingman7743/PyAthenaJDBC.svg?branch=master

PyAthenaJDBC

PyAthenaJDBC is a Python DB API 2.0 (PEP 249) compliant wrapper for Amazon Athena JDBC driver.

Requirements

  • Python
    • CPython 2,7, 3,4, 3.5, 3.6, 3.7
  • Java
    • Java >= 8 (JDBC 4.2)

JDBC driver compatibility

Version JDBC driver version Vendor
< 2.0.0 == 1.1.0 AWS (Early released JDBC driver. It is incompatible with Simba's JDBC driver)
>= 2.0.0 >= 2.0.5 Simba

Installation

$ pip install PyAthenaJDBC

Extra packages:

Package Install command Version
Pandas pip install PyAthenaJDBC[Pandas] >=0.19.0
SQLAlchemy pip install PyAthenaJDBC[SQLAlchemy] >=1.0.0, <2.0.0

Usage

Basic usage

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2')
try:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT * FROM one_row
        """)
        print(cursor.description)
        print(cursor.fetchall())
finally:
    conn.close()

Cursor iteration

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2')
try:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT * FROM many_rows LIMIT 10
        """)
        for row in cursor:
            print(row)
finally:
    conn.close()

Query with parameter

Supported DB API paramstyle is only PyFormat. PyFormat only supports named placeholders with old % operator style and parameters specify dictionary format.

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2')
try:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT col_string FROM one_row_complex
        WHERE col_string = %(param)s
        """, {'param': 'a string'})
        print(cursor.fetchall())
finally:
    conn.close()

if % character is contained in your query, it must be escaped with %% like the following:

SELECT col_string FROM one_row_complex
WHERE col_string = %(param)s OR col_string LIKE 'a%%'

JVM options

In the connect method or connection object, you can specify JVM options with a string array.

You can increase the JVM heap size like the following:

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2',
               jvm_options=['-Xms1024m', '-Xmx4096m'])
try:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT * FROM many_rows
        """)
        print(cursor.fetchall())
finally:
    conn.close()

JDBC 4.1

If you want to use JDBC 4.1, download the corresponding JDBC driver and specify the path of the downloaded JDBC driver as the argument driver_path of the connect method or connection object.

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2',
               driver_path='/path/to/AthenaJDBC41_2.0.7.jar')

JDBC driver configuration options

The connect method or connection object pass keyword arguments as options to the JDBC driver. If you want to change the behavior of the JDBC driver, specify the option as a keyword argument in the connect method or connection object.

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2',
               LogPath='/path/to/pyathenajdbc/log/',
               LogLevel='6')

For details of the JDBC driver options refer to the official documentation.

NOTE: Option names and values are case-sensitive. The option value is specified as a character string.

Specify the Query Results

If you want to specify where athena stores the txt/cxv and txt.metadata/csv.metadata files containing the result of each query, you can specify it as follows:

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2',
               LogPath='/path/to/pyathenajdbc/log/',
               LogLevel='6',
               S3OutputLocation='s3://YOUR_S3_BUCKET/path/to/query_results/')

For details see the Athena Documentation:

SQLAlchemy

Install SQLAlchemy with pip install SQLAlchemy>=1.0.0 or pip install PyAthenaJDBC[SQLAlchemy]. Supported SQLAlchemy is 1.0.0 or higher and less than 2.0.0.

import contextlib
from urllib.parse import quote_plus  # PY2: from urllib import quote_plus
from sqlalchemy.engine import create_engine
from sqlalchemy.sql.expression import select
from sqlalchemy.sql.functions import func
from sqlalchemy.sql.schema import Table, MetaData

conn_str = 'awsathena+jdbc://{access_key}:{secret_key}@athena.{region_name}.amazonaws.com:443/'\
           '{schema_name}?s3_staging_dir={s3_staging_dir}'
engine = create_engine(conn_str.format(
    access_key=quote_plus('YOUR_ACCESS_KEY'),
    secret_key=quote_plus('YOUR_SECRET_ACCESS_KEY'),
    region_name='us-west-2',
    schema_name='default',
    s3_staging_dir=quote_plus('s3://YOUR_S3_BUCKET/path/to/')))
try:
    with contextlib.closing(engine.connect()) as conn:
        many_rows = Table('many_rows', MetaData(bind=engine), autoload=True)
        print(select([func.count('*')], from_obj=many_rows).scalar())
finally:
    engine.dispose()

The connection string has the following format:

awsathena+jdbc://{access_key}:{secret_key}@athena.{region_name}.amazonaws.com:443/{schema_name}?s3_staging_dir={s3_staging_dir}&driver_path={driver_path}&...

If you do not specify access_key and secret_key using instance profile or boto3 configuration file:

awsathena+jdbc://:@athena.{region_name}.amazonaws.com:443/{schema_name}?s3_staging_dir={s3_staging_dir}&driver_path={driver_path}&...

NOTE: s3_staging_dir requires quote. If access_key, secret_key and other parameter contain special characters, quote is also required.

Pandas

Minimal example for Pandas DataFrame:

from pyathenajdbc import connect
import pandas as pd

conn = connect(access_key='YOUR_ACCESS_KEY_ID',
               secret_key='YOUR_SECRET_ACCESS_KEY',
               s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2',
               jvm_path='/path/to/jvm')  # optional, as used by JPype
df = pd.read_sql("SELECT * FROM many_rows LIMIT 10", conn)

As Pandas DataFrame:

import contextlib
from pyathenajdbc import connect
from pyathenajdbc.util import as_pandas

with contextlib.closing(
        connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/'
                region_name='us-west-2'))) as conn:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT * FROM many_rows
        """)
        df = as_pandas(cursor)
print(df.describe())

Examples

Redash query runner example

See examples/redash/athena.py

Credential

Support AWS CLI credentials, Properties file credentials and AWS credentials provider chain.

Credential files

~/.aws/credentials

[default]
aws_access_key_id=YOUR_ACCESS_KEY_ID
aws_secret_access_key=YOUR_SECRET_ACCESS_KEY

~/.aws/config

[default]
region=us-west-2
output=json

Environment variables

$ export AWS_ACCESS_KEY_ID=YOUR_ACCESS_KEY_ID
$ export AWS_SECRET_ACCESS_KEY=YOUR_SECRET_ACCESS_KEY
$ export AWS_DEFAULT_REGION=us-west-2

Additional environment variable:

$ export AWS_ATHENA_S3_STAGING_DIR=s3://YOUR_S3_BUCKET/path/to/

Properties file credentials

Create a property file of the following format.

/path/to/AWSCredentials.properties

accessKeyId:YOUR_ACCESS_KEY_ID
secretKey:YOUR_SECRET_ACCESS_KEY

Specify the property file path with credential_file of the connect method or connection object.

from pyathenajdbc import connect

conn = connect(credential_file='/path/to/AWSCredentials.properties',
               s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2')

PyAthenaJDBC uses the property file to authenticate Amazon Athena.

AWS credentials provider chain

See AWS credentials provider chain

AWS credentials provider chain that looks for credentials in this order:

  • Environment Variables - AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY (RECOMMENDED since they are recognized by all the AWS SDKs and CLI except for .NET), or AWS_ACCESS_KEY and AWS_SECRET_KEY (only recognized by Java SDK)
  • Java System Properties - aws.accessKeyId and aws.secretKey
  • Credential profiles file at the default location (~/.aws/credentials) shared by all AWS SDKs and the AWS CLI
  • Credentials delivered through the Amazon EC2 container service if AWS_CONTAINER_CREDENTIALS_RELATIVE_URI" environment variable is set and security manager has permission to access the variable,
  • Instance profile credentials delivered through the Amazon EC2 metadata service

In the connect method or connection object, you can connect by specifying at least s3_staging_dir and region_name. It is not necessary to specify access_key and secret_key.

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2')

Terraform Instance profile example:

See examples/terraform/

Testing

Depends on the following environment variables:

$ export AWS_ACCESS_KEY_ID=YOUR_ACCESS_KEY_ID
$ export AWS_SECRET_ACCESS_KEY=YOUR_SECRET_ACCESS_KEY
$ export AWS_DEFAULT_REGION=us-west-2
$ export AWS_ATHENA_S3_STAGING_DIR=s3://YOUR_S3_BUCKET/path/to/

Run test

$ pip install pipenv
$ pipenv install --dev
$ pipenv run scripts/test_data/upload_test_data.sh
$ pipenv run pytest
$ pipenv run scripts/test_data/delete_test_data.sh

Run test multiple Python versions

$ pip install pipenv
$ pipenv install --dev
$ pipenv run scripts/test_data/upload_test_data.sh
$ pyenv local 3.7.2 3.6.8 3.5.7 3.4.10 2.7.16
$ pipenv run tox
$ pipenv run scripts/test_data/delete_test_data.sh

License

The license of all Python code except JDBC driver is MIT license.

JDBC driver

For the license of JDBC driver, please check the following link.