forked from grimme-lab/xtb
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreferences.bib
205 lines (189 loc) · 9.08 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
@article{bannwarth2020,
title={Extended tight‐binding quantum chemistry methods},
author={Bannwarth, Christoph and Caldeweyher, Eike and Ehlert, Sebastian and Hansen, Andreas and Pracht, Philipp and Seibert, Jakob and Spicher, Spicher and Grimme, Stefan},
journal={{WIREs} Comput{.} Mol{.} Sci{.}},
volume = {11},
year={2020},
pages={e01493},
doi={10.1002/wcms.1493},
url={https://dx.doi.org/10.1002/wcms.1493}
}
@article{grimme2017,
title={A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z=1--86)},
author={Grimme, Stefan and Bannwarth, Christoph and Shushkov, Philip},
journal={J{.} Chem{.} Theory Comput{.}},
volume={13},
number={5},
pages={1989--2009},
year={2017},
doi={10.1021/acs.jctc.7b00118},
url={https://dx.doi.org/10.1021/acs.jctc.7b00118},
publisher={ACS Publications}
}
@article{grimme2019,
title={Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations},
author={Grimme, Stefan},
journal={J{.} Chem{.} Theory Comput{.}},
volume={15},
number={5},
pages={2847--2862},
year={2019},
doi={10.1021/acs.jctc.9b00143},
url={https://dx.doi.org/10.1021/acs.jctc.9b00143},
publisher={ACS Publications}
}
@article{koopman2019,
title={Calculation of Electron Ionization Mass Spectra with Semiempirical GFNn-xTB Methods},
author={Koopman, Jeroen and Grimme, Stefan},
journal={ACS Omega},
volume={4},
number={12},
pages={15120--15133},
year={2019},
doi={10.1021/acsomega.9b02011},
url={https://dx.doi.org/10.1021/acsomega.9b02011},
publisher={ACS Publications}
}
@article{koopman2021,
title = {From QCEIMS to QCxMS: A Tool to Routinely Calculate CID Mass Spectra Using Molecular Dynamics},
author = {Koopman, Jeroen and Grimme, Stefan},
journal = {J{.} Am{.} Soc{.} Mass Spectrom{.}},
volume = {32},
number = {7},
pages = {1735--1751},
year = {2021},
doi = {10.1021/jasms.1c00098},
url = {https://dx.doi.org/10.1021/jasms.1c00098},
publisher = {ACS Publications}
}
@article{asgeirsson2017,
title={Quantum chemical calculation of electron ionization mass spectra for general organic and inorganic molecules},
author={{\'A}sgeirsson, Vilhj{\'a}lmur and Bauer, Christoph A and Grimme, Stefan},
journal={Chem{.} Sci{.}},
volume={8},
number={7},
pages={4879--4895},
year={2017},
doi={10.1039/c7sc00601b},
url={https://dx.doi.org/10.1039/c7sc00601b},
publisher={Royal Society of Chemistry}
}
@article{grimme2016,
title={Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB)},
author={Grimme, Stefan and Bannwarth, Christoph},
journal={J{.} Chem{.} Phys{.}},
volume={145},
number={5},
pages={054103},
year={2016},
doi={10.1063/1.4959605},
url={https://dx.doi.org/10.1063/1.4959605},
publisher={AIP Publishing LLC}
}
@article{caldeweyher2020,
title={Extension and evaluation of the D4 London-dispersion model for periodic systems},
author={Caldeweyher, Eike and Mewes, Jan-Michael and Ehlert, Sebastian and Grimme, Stefan},
journal={Phys{.} Chem{.} Chem{.} Phys{.}},
volume={22},
number={16},
pages={8499--8512},
year={2020},
doi={10.1039/D0CP00502A},
url={https://dx.doi.org/10.1039/D0CP00502A},
publisher={Royal Society of Chemistry}
}
@article{caldeweyher2019,
title={A generally applicable atomic-charge dependent London dispersion correction},
author={Caldeweyher, Eike and Ehlert, Sebastian and Hansen, Andreas and Neugebauer, Hagen and Spicher, Sebastian and Bannwarth, Christoph and Grimme, Stefan},
journal={J{.} Chem{.} Phys{.}},
volume={150},
number={15},
pages={154122},
year={2019},
doi={10.1063/1.5090222},
url={https://dx.doi.org/10.1063/1.5090222},
publisher={AIP Publishing LLC}
}
@article{caldeweyher2017,
title={Extension of the D3 dispersion coefficient model},
author={Caldeweyher, Eike and Bannwarth, Christoph and Grimme, Stefan},
journal={J{.} Chem{.} Phys{.}},
volume={147},
number={3},
pages={034112},
year={2017},
doi={10.1063/1.4993215},
url={https://dx.doi.org/10.1063/1.4993215},
publisher={AIP Publishing LLC}
}
@article{spicher2020,
title={Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems},
author={Spicher, Sebastian and Grimme, Stefan},
journal={Angew{.} Chem{.} Int{.} Ed{.}},
volume={59},
pages={15665--15673},
year={2020},
doi={10.1002/anie.202004239},
url={https://dx.doi.org/10.1002/anie.202004239},
publisher={Wiley Online Library}
}
@article{spicher2021,
author={Spicher, Sebastian and Grimme, Stefan},
title={Single-Point Hessian Calculations for Improved Vibrational Frequencies and Rigid-Rotor-Harmonic-Oscillator Thermodynamics},
journal={J{.} Chem{.} Theory Comput{.}},
volume={17},
number={3},
pages={1701--1714},
year={2021},
doi={10.1021/acs.jctc.0c01306},
url={https://doi.org/10.1021/acs.jctc.0c01306},
eprint={https://doi.org/10.1021/acs.jctc.0c01306},
publisher={ACS Publications}
}
@article{pracht2019,
title={A Robust Non-Self-Consistent Tight-Binding Quantum Chemistry Method for large Molecules},
author={Pracht, Philipp and Caldeweyher, Eike and Ehlert, Sebastian and Grimme, Stefan},
year={2019},
doi={10.26434/chemrxiv.8326202.v1},
url={https://dx.doi.org/10.26434/chemrxiv.8326202.v1},
publisher={ChemRxiv}
}
@article{bannwarth2019,
title={GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions},
author={Bannwarth, Christoph and Ehlert, Sebastian and Grimme, Stefan},
journal={J{.} Chem{.} Theory Comput{.}},
volume={15},
number={3},
pages={1652--1671},
year={2019},
doi={10.1021/acs.jctc.8b01176},
url={https://dx.doi.org/10.1021/acs.jctc.8b01176},
publisher={ACS Publications}
}
@article{ehlert2021,
author = {Ehlert, Sebastian and Stahn, Marcel and Spicher, Sebastian and Grimme, Stefan},
title = {Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods},
journal={J{.} Chem{.} Theory Comput{.}},
volume = {17},
number = {7},
pages = {4250--4261},
year = {2021},
doi = {10.1021/acs.jctc.1c00471},
URL = {https://doi.org/10.1021/acs.jctc.1c00471},
}
@article{grimme_non-self-consistent_2023,
title = {A non-self-consistent tight-binding electronic structure potential in a polarized double-ζ basis set for all spd-block elements up to {Z} = 86},
volume = {158},
issn = {0021-9606},
url = {https://doi.org/10.1063/5.0137838},
doi = {10.1063/5.0137838},
abstract = {Existing semiempirical molecular orbital methods suffer from the usually minimal atomic-orbital (AO) basis set used to simplify the calculations. Here, a completely new and consistently parameterized tight-binding electronic structure Hamiltonian evaluated in a deeply contracted, properly polarized valence double-zeta basis set (vDZP) is described. The inner-shell electrons are accounted for by standard, large-core effective potentials and approximations to them. The primary target of this so-called density matrix tight-binding method is to reproduce the one-particle density matrix P of a molecular ωB97X-V range-separated hybrid density functional theory (DFT) calculation in exactly the same basis set. Additional properties considered are orbital energies, dipole polarizabilities and dipole moments, and dipole polarizability derivatives. The key features of the method are as follows: (a) it is non-self-consistent with an overall fixed number of only three required matrix diagonalizations; (b) only AO overlap integrals are needed to construct the effective Hamiltonian matrix; (c) new P-dependent terms emulating non-local exchange are included; and (d) only element-specific empirical parameters (about 50 per element) need to be determined. The method globally achieves a high accuracy for the target properties at a speedup compared to the ωB97X-V/vDZP reference of about 3–4 orders of magnitude. It performs robustly for difficult transition metal complexes, for highly charged or zwitterionic systems, and for chemically unusual bonding situations, indicating a generally robust approximation of the (self-consistent) Kohn–Sham potential. As an example application, the vibrational Raman spectrum of an entire protein with 327 atoms with respect to the DFT reference calculation is shown. This method may be used out-of-the-box to generate molecular/atomic features for machine learning applications or as the basis for accurate high-speed DFT methods.},
number = {12},
urldate = {2023-06-09},
journal = {The Journal of Chemical Physics},
author = {Grimme, Stefan and Müller, Marcel and Hansen, Andreas},
month = mar,
year = {2023},
pages = {124111},
file = {Full Text PDF:/Users/marcelmueller/Zotero/storage/LRJJ6T9I/Grimme et al. - 2023 - A non-self-consistent tight-binding electronic str.pdf:application/pdf;Snapshot:/Users/marcelmueller/Zotero/storage/FAT76IUH/A-non-self-consistent-tight-binding-electronic.html:text/html},
}