forked from SoonminHwang/caffe-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
executable file
·156 lines (137 loc) · 6.23 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function, division
import argparse
import caffe
import cv2
import json
import numba
import numpy as np
from os.path import dirname, exists, join, splitext
import sys
import util
__author__ = 'Fisher Yu'
__copyright__ = 'Copyright (c) 2016, Fisher Yu'
__email__ = '[email protected]'
__license__ = 'MIT'
class Dataset(object):
def __init__(self, dataset_name):
self.work_dir = dirname(__file__)
info_path = join(self.work_dir, 'datasets', dataset_name + '.json')
if not exists(info_path):
raise IOError("Do not have information for dataset {}"
.format(dataset_name))
with open(info_path, 'r') as fp:
info = json.load(fp)
self.palette = np.array(info['palette'], dtype=np.uint8)
self.mean_pixel = np.array(info['mean'], dtype=np.float32)
self.dilation = info['dilation']
self.zoom = info['zoom']
self.name = dataset_name
self.model_name = 'dilation{}_{}'.format(self.dilation, self.name)
self.model_path = join(self.work_dir, 'models',
self.model_name + '_deploy_joint.prototxt')
# self.model_path = join(self.work_dir, 'models',
# 'frontend_vgg_deploy.prototxt')
@property
def pretrained_path(self):
p = join(dirname(__file__), 'pretrained',
self.model_name + '.caffemodel')
if not exists(p):
download_path = join(self.work_dir, 'pretrained',
'download_{}.sh'.format(self.name))
raise IOError('Pleaes run {} to download the pretrained network '
'weights first'.format(download_path))
return p
def predict(dataset_name, input_path, output_path, weights):
import os
dataset = Dataset(dataset_name)
if weights is None:
print( 'Load pre-trained weights from %s' % (dataset.pretrained_path) )
# net = caffe.Net(dataset.model_path, dataset.pretrained_path, caffe.TEST)
model_path = os.path.join('training', 'frontend_vgg_test_net.txt')
net = caffe.Net(model_path, dataset.pretrained_path, caffe.TEST)
else:
print( 'Load weights from %s' % (weights) )
net = caffe.Net(dataset.model_path, weights, caffe.TEST)
# model_path = os.path.join('models', 'frontend_vgg_deploy.prototxt')
# net = caffe.Net(model_path, dataset.pretrained_path, caffe.TEST)
label_margin = 186
input_dims = net.blobs['data'].shape
batch_size, num_channels, input_height, input_width = input_dims
caffe_in = np.zeros(input_dims, dtype=np.float32)
image_ori = cv2.imread(input_path, 1).astype(np.float32) - dataset.mean_pixel
image_size = image_ori.shape
output_height = input_height - 2 * label_margin
output_width = input_width - 2 * label_margin
image = cv2.copyMakeBorder(image_ori, label_margin, label_margin,
label_margin, label_margin,
cv2.BORDER_REFLECT_101)
num_tiles_h = image_size[0] // output_height + \
(1 if image_size[0] % output_height else 0)
num_tiles_w = image_size[1] // output_width + \
(1 if image_size[1] % output_width else 0)
prediction = []
for h in range(num_tiles_h):
col_prediction = []
for w in range(num_tiles_w):
offset = [output_height * h,
output_width * w]
tile = image[offset[0]:offset[0] + input_height,
offset[1]:offset[1] + input_width, :]
margin = [0, input_height - tile.shape[0],
0, input_width - tile.shape[1]]
tile = cv2.copyMakeBorder(tile, margin[0], margin[1],
margin[2], margin[3],
cv2.BORDER_REFLECT_101)
caffe_in[0] = tile.transpose([2, 0, 1])
out = net.forward_all(**{net.inputs[0]: caffe_in})
# net.blobs['data'].data[...] = caffe_in
# out = net.forward()
prob = out['prob'][0]
col_prediction.append(prob)
# print('concat row')
col_prediction = np.concatenate(col_prediction, axis=2)
prediction.append(col_prediction)
prob = np.concatenate(prediction, axis=1)
if dataset.zoom > 1:
prob = util.interp_map(prob, dataset.zoom, image_size[1], image_size[0])
prediction = np.argmax(prob.transpose([1, 2, 0]), axis=2)
color_image = dataset.palette[prediction.ravel()].reshape(image_size)
color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
print('Writing', output_path)
cv2.imwrite(output_path, color_image)
# import os
# output_path = os.path.join( os.path.dirname(output_path), 'overlayed_' + os.path.basename(output_path) )
output_path = ''.join(*output_path.split('.')[:-1]) + '_overlayed.png'
overlay_image = image_ori * 0.5 + color_image * 0.5
cv2.imwrite(output_path, overlay_image)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('dataset', nargs='?',
choices=['pascal_voc', 'camvid', 'kitti', 'cityscapes'])
parser.add_argument('input_path', nargs='?', default='',
help='Required path to input image')
parser.add_argument('-o', '--output_path', default=None)
parser.add_argument('-w', '--weights', default=None)
parser.add_argument('--gpu', type=int, default=-1,
help='GPU ID to run CAFFE. '
'If -1 (default), CPU is used')
args = parser.parse_args()
if args.input_path == '':
raise IOError('Error: No path to input image')
if not exists(args.input_path):
raise IOError("Error: Can't find input image " + args.input_path)
if args.gpu >= 0:
caffe.set_mode_gpu()
caffe.set_device(args.gpu)
print('Using GPU ', args.gpu)
else:
caffe.set_mode_cpu()
print('Using CPU')
if args.output_path is None:
args.output_path = '{}_{}.png'.format(
splitext(args.input_path)[0], args.dataset)
predict(args.dataset, args.input_path, args.output_path, args.weights)
if __name__ == '__main__':
main()