-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_memory_throughput.py
603 lines (526 loc) · 21.3 KB
/
run_memory_throughput.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
# Modified from https://github.com/tatsu-lab/stanford_alpaca/blob/main/train.py
import copy
import logging
import math
import re
import os
from dataclasses import dataclass, field
from typing import Dict, Optional, Sequence
import peft
import torch
import transformers
from torch.utils.data import Dataset
from transformers import Trainer
from peft import PeftModel, LoraConfig, TaskType, get_peft_model
from datasets import load_dataset
from accelerate.utils import set_seed
from models.llama.modeling_llama import LlamaForCausalLM
from models.mistral.modeling_mistral import MistralForCausalLM
os.environ["WANDB_PROJECT"] = "hyclora-gsm8k"
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "<s>"
DEFAULT_UNK_TOKEN = "<unk>"
ANSWER_PROMPT = "The final answer is: "
QUESTION_PROMPT = "\nAnswer the above question. First think step by step and then answer the final number.\n"
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(
default="LoftQ/Mistral-7B-v0.1-4bit-64rank",
metadata={"help": "Path to the model."},
)
adapter_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "Path to the LoRA adapter. Used in evaluation or resuming from the checkpoint."
},
)
lora_init: bool = field(
default=False,
metadata={
"help": "True: Use zero and gaussian initialization; False: Load adapters from LoftQ in HF hub."
},
)
full_precision: bool = field(
default=False,
metadata={
"help": "False: Use bitsandbytes Linear4bit, real quantization"
"True: Use quantization equivalent fp16/fp32 weights."
"Note: Set True for data parallel training"
},
)
rank: int = field(
default=16,
metadata={
"help": "Rank of LoRA adapters. LoftQ does not require this config. Used for fp16 LoRA or QLoRA."
},
)
bits: int = field(
default=4,
metadata={
"help": "Bit of the backbone. LoftQ does not require this config. Used for QLoRA."
},
)
lora_alpha: int = field(
default=16,
metadata={"help": "LoftQ does not require this config. Used for QLoRA."},
)
token: Optional[str] = field(
default=None,
metadata={"help": "HF token to access to private models, e.g., meta-llama"},
)
replace_module: bool = field(
default=False,
metadata={
"help": "True: Use transform block; False: Do not use transform block"
},
),
gradient_checkpointing_enable: bool = field(
default=False,
metadata={
"help": "True: Use gradient checkpointing; False: Do not use gradient checkpointing"
},
)
flash_attention: bool = field(
default=False,
metadata={
"help": "True: Use Flash Attention; False: Do not use Flash Attention"
},
)
lora_dropout: float = field(default=0.0, metadata={"help": "LoRA dropout"})
init_lora_weights: str = field(
default="qlora",
metadata={
"help": "init_lora_weights (`['gaussian', 'loftq', 'pissa', 'pissa_init']`):"
},
)
@dataclass
class DataArguments:
data_name: str = field(default="gsm8k", metadata={"help": "Dataset name."})
eval_batch_size: int = field(default=8, metadata={"help": "Evaluation batch size."})
seq_len: int = field(default=512, metadata={"help": "Sequence length for evaluation"})
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=512,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
expt_name: str = field(
default="default",
metadata={"help": "Experiment name"},
)
is_train: bool = field(
default=True, metadata={"help": "True: Train the model; False: Evaluate the model"}
)
is_eval: bool = field(
default=True, metadata={"help": "True: Evaluate the model; False: Train the model"}
)
trained_adapter_path: Optional[str] = field(
default=None,
metadata={"help": "Path to the trained adapter. Used in evaluation or resuming from the checkpoint."},
)
evaluate_memory: bool = field(
default=False,
metadata={"help": "True: Evaluate the memory usage; False: Do not evaluate the memory usage"},
)
evaluate_throughput: bool = field(
default=False,
metadata={"help": "True: Evaluate the throughput; False: Do not evaluate the throughput"},
)
# hyper parameters about hyclora method
@dataclass
class HyCLoRAArguments:
use_hyclora: bool = field(
default=True,
metadata={"help": "Whether to replace the original training module to fused training module"}
)
layer_type: str = field(
default="baseline",
metadata={"help": "Different types of fused training layers (Available: [baseline | intra | intra_inter])"}
)
iteration_threshold: int = field(
default=5,
metadata={"help": "calibration steps"}
)
softmax_outlier_ratio: float = field(
default=0.05,
metadata={"help": "softmax outlier selection ratio"}
)
layernorm_outlier_ratio: float = field(
default=0.005,
metadata={"help": "layernorm outlier channels selection ratio"}
)
q_bit: int = field(
default=4,
metadata={"help": "quantization bit"}
)
class MemoryTrainer(Trainer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.iteration_num = 0
def compute_loss(self, model, inputs, return_outputs=False):
if self.iteration_num == 0:
print(f"torch.cuda.memory_allocated (static): {torch.cuda.memory_allocated() / 1024 / 1024:.2f} MiB")
loss = super().compute_loss(model, inputs, return_outputs)
# # print the memory info, and print it with xxx MiB
print(f"torch.cuda.memory_allocated: {torch.cuda.memory_allocated() / 1024 / 1024:.2f} MiB")
self.iteration_num += 1
torch.cuda.empty_cache()
if self.iteration_num == 2:
exit(0)
return loss
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def _tokenize_fn(
strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer
) -> Dict:
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
)
for text in strings
]
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
input_ids_lens = labels_lens = [
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def preprocess(
sources: Sequence[str],
targets: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
"""Preprocess the data by tokenizing."""
# sources are questions, and targets are answers
examples = [s + t for s, t in zip(sources, targets)]
examples_tokenized, sources_tokenized = [
_tokenize_fn(strings, tokenizer) for strings in (examples, sources)
]
input_ids = examples_tokenized["input_ids"]
labels = copy.deepcopy(input_ids)
for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]):
label[:source_len] = IGNORE_INDEX
return dict(input_ids=input_ids, labels=labels)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer):
super(SupervisedDataset, self).__init__()
logging.warning("Formatting inputs...")
sources = [f"{example['question']}{QUESTION_PROMPT}" for example in raw_data]
targets = [
f"{example['answer']}{tokenizer.eos_token}".replace("####", ANSWER_PROMPT)
for example in raw_data
]
logging.warning("Tokenizing inputs... This may take some time...")
data_dict = preprocess(sources, targets, tokenizer)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(input_ids=self.input_ids[i], labels=self.labels[i])
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
seq_len: int
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple(
[instance[key] for instance in instances] for key in ("input_ids", "labels")
)
#! a tricky way to pad the input_ids and labels to 16's multiple
# 1. find the max length of input_ids
max_len = max([len(input_id) for input_id in input_ids])
# 2. pad the input_ids and labels to 32's multiple
max_len = self.seq_len
# 3. generate a max_len tensor
max_len_tensor = torch.randn(max_len).to(torch.int64)
# 4. append the max_len tensor to the input_ids and labels
input_ids.append(max_len_tensor)
labels.append(max_len_tensor)
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
)
labels = torch.nn.utils.rnn.pad_sequence(
labels, batch_first=True, padding_value=IGNORE_INDEX
)
# delete the max_len tensor
input_ids = input_ids[:-1]
labels = labels[:-1]
return dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
def make_supervised_data_module(
tokenizer: transformers.PreTrainedTokenizer, data_args
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
logging.warning("Downloading Data")
dataset = load_dataset(data_args.data_name, "main")
train_set = dataset["train"]
train_dataset = SupervisedDataset(raw_data=train_set, tokenizer=tokenizer)
print("train_dataset: ", train_dataset)
data_collator = DataCollatorForSupervisedDataset(seq_len=data_args.seq_len, tokenizer=tokenizer)
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
def train_and_eval():
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments, HyCLoRAArguments)
)
model_args, data_args, training_args, hyclora_args = parser.parse_args_into_dataclasses()
if 'llama' in model_args.model_name_or_path:
model = LlamaForCausalLM.from_pretrained(
model_args.model_name_or_path,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
token=model_args.token,
use_cache=False if model_args.gradient_checkpointing_enable else True,
quantization_config=transformers.BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
),
attn_implementation=(
"flash_attention_2" if model_args.flash_attention else "eager"
),
)
model.set_fused_llama_layer(hyclora_args)
elif 'mistral' in model_args.model_name_or_path:
model = MistralForCausalLM.from_pretrained(
model_args.model_name_or_path,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
token=model_args.token,
use_cache=False if model_args.gradient_checkpointing_enable else True,
quantization_config=transformers.BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
),
attn_implementation=(
"flash_attention_2" if model_args.flash_attention else "eager"
),
)
model.set_fused_mistral_layer(hyclora_args)
else:
raise ValueError("No implementation of model. Now support: llama/mistral")
model = peft.prepare_model_for_kbit_training(
model,
use_gradient_checkpointing=model_args.gradient_checkpointing_enable,
gradient_checkpointing_kwargs={"use_reentrant": False},
)
if model_args.gradient_checkpointing_enable:
print("Gradient Checkpointing is enabled")
###################### training part ######################
if model_args.lora_init:
task_type = TaskType.CAUSAL_LM
target_modules = ["q_proj", "k_proj", "v_proj", "up_proj", "gate_proj", "down_proj", "o_proj"]
if model_args.rank != model_args.lora_alpha:
raise ValueError(f"Now the hyclora code does not support {model_args.rank} != {model_args.lora_alpha}. ")
lora_config = LoraConfig(
task_type=task_type,
inference_mode=False,
r=model_args.rank,
lora_alpha=model_args.lora_alpha,
lora_dropout=0.0,
target_modules=target_modules,
init_lora_weights=True if model_args.init_lora_weights == "qlora" else model_args.init_lora_weights,
)
model = get_peft_model(model, lora_config)
elif model_args.adapter_name_or_path is not None:
model = PeftModel.from_pretrained(
model,
model_args.adapter_name_or_path,
is_trainable=True,
token=model_args.token,
)
else:
model = PeftModel.from_pretrained(
model,
model_args.model_name_or_path,
subfolder="loftq_init",
is_trainable=True,
token=model_args.token,
)
# get the model name
for name, module in model.named_modules():
module.name = name
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
token=model_args.token,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="left",
use_fast=False,
)
special_tokens_dict = dict()
if tokenizer.pad_token is None:
special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKEN
if tokenizer.eos_token is None:
special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKEN
if tokenizer.bos_token is None:
special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKEN
if tokenizer.unk_token is None:
special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKEN
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=tokenizer,
model=model,
)
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
training_args.output_dir = os.path.join(
training_args.output_dir,
training_args.expt_name,
model_args.model_name_or_path.split("/")[-1],
f"ep_{int(training_args.num_train_epochs)}",
f"lr_{training_args.learning_rate}",
f"seed_{training_args.seed}",
)
model = model.to(torch.bfloat16)
if training_args.is_train:
if training_args.evaluate_throughput and training_args.evaluate_memory:
raise ValueError("Cannot evaluate both throughput and memory usage.")
if not training_args.evaluate_throughput and not training_args.evaluate_memory:
raise ValueError("Please set either evaluate_throughput or evaluate_memory to True.")
if training_args.evaluate_memory:
trainer = MemoryTrainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
else:
trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
trainer.train()
###################### testing part ######################
# reload the adapter
if training_args.trained_adapter_path is not None:
model = PeftModel.from_pretrained(
model,
training_args.trained_adapter_path,
is_trainable=True,
token=model_args.token,
)
if training_args.is_eval:
# Evaluation
dataset = load_dataset(data_args.data_name, "main")
test_set = dataset['test']
logging.warning("Formatting inputs...")
question = [f"{example['question']}{QUESTION_PROMPT}" for example in test_set]
answer = []
# get numerical answer
for example in test_set['answer']:
ans = example.split('####')[-1]
ans = ans.replace(',', '') # handle numbers like 2,000
try:
ans = float(ans)
except ValueError:
ans = float("inf")
answer.append(ans)
logging.warning("Tokenizing inputs...")
eval_step = math.ceil(len(question) / data_args.eval_batch_size)
logging.warning(f"Total example: {len(question)} | eval batch size: {data_args.eval_batch_size}" f"eval steps: {eval_step}")
question_data = []
for i in range(eval_step):
if i < eval_step - 1:
batch = tokenizer(
question[i*data_args.eval_batch_size: (i+1)*data_args.eval_batch_size],
return_tensors="pt",
padding="longest",
)
else:
batch = tokenizer(
question[i*data_args.eval_batch_size:],
return_tensors="pt",
padding="longest",
)
batch['input_len'] = len(batch['input_ids'][0])
question_data.append(batch)
model.eval()
gen_kwargs = {
"max_new_tokens": 256,
"temperature": 0.1,
"top_k": 40,
"top_p": 0.95,
"do_sample": True,
}
ans_pred_list = []
set_seed(42)
for step, batch in enumerate(question_data):
with torch.no_grad():
gen_kwargs["input_ids"] = batch["input_ids"].to('cuda')
gen_kwargs["attention_mask"] = batch["attention_mask"].to('cuda')
generated_tokens = model.generate(**gen_kwargs)
pred_tokens = generated_tokens[:, batch['input_len']:]
decoded_pred = tokenizer.batch_decode(pred_tokens, skip_special_tokens=True)
# Extract the numbers in sentences
# print(decoded_pred)
ans_pred_list += [extract_answer_number(sentence_pred) for sentence_pred in decoded_pred]
accuracy = compute_accuracy(answer, ans_pred_list)
print(f'accuracy: {accuracy}')
print("prediction", ans_pred_list)
print("ground truth", answer)
accuracy = compute_accuracy(answer, ans_pred_list)
print(f"adapter: {model_args.adapter_name_or_path} | GSM8K test accuracy: {100*accuracy:.2f}% | "
f"full precision: {model_args.full_precision}")
if training_args.is_train:
trainer.save_state()
trainer.save_model(output_dir=training_args.output_dir)
def extract_answer_number(sentence: str) -> float:
sentence = sentence.replace(',', '')
pred = [s for s in re.findall(r'-?\d+\.?\d*', sentence)]
if not pred:
return float('inf')
segment = sentence.split(ANSWER_PROMPT)
if len(segment) > 1:
pred_answer = segment[1]
pred_answer = [s for s in re.findall(r'-?\d+\.?\d*', pred_answer)]
if len(pred_answer) > 0:
pred_answer = pred_answer[0]
else:
pred_answer = float(pred[-1])
else:
# use the last number as the answer
pred_answer = float(pred[-1])
if isinstance(pred_answer, str):
try:
pred_answer = float(pred_answer)
except ValueError as e:
pred_answer = float('inf')
return pred_answer
def compute_accuracy(pred: list, gold: list):
acc = 0.0
for p, g in zip(pred, gold):
if p == g:
acc += 1
return acc / len(pred)
if __name__ == "__main__":
train_and_eval()