-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathglfft.cpp
1156 lines (985 loc) · 34.3 KB
/
glfft.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright (C) 2015 Hans-Kristian Arntzen <[email protected]>
*
* Permission is hereby granted, free of charge,
* to any person obtaining a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "glfft.hpp"
#include <algorithm>
#include <stdexcept>
#include <fstream>
#include <sstream>
#include <numeric>
#include <assert.h>
#include <cmath>
#ifdef GLFFT_CLI_ASYNC
#include "glfft_cli.hpp"
#endif
#ifndef GLFFT_SHADER_FROM_FILE
#include "glsl/fft_common.inc"
#include "glsl/fft_radix4.inc"
#include "glsl/fft_radix8.inc"
#include "glsl/fft_radix16.inc"
#include "glsl/fft_radix64.inc"
#include "glsl/fft_shared.inc"
#include "glsl/fft_main.inc"
#endif
using namespace std;
using namespace GLFFT;
enum Bindings
{
BindingSSBOIn = 0,
BindingSSBOOut = 1,
BindingSSBOAux = 2,
BindingUBO = 3,
BindingTexture0 = 4,
BindingTexture1 = 5,
BindingImage = 6
};
struct WorkGroupSize
{
unsigned x, y, z;
};
struct Radix
{
WorkGroupSize size;
unsigned num_workgroups_x;
unsigned num_workgroups_y;
unsigned radix;
unsigned vector_size;
bool shared_banked;
};
static unsigned next_pow2(unsigned v)
{
v--;
v |= v >> 16;
v |= v >> 8;
v |= v >> 4;
v |= v >> 2;
v |= v >> 1;
return v + 1;
}
static void reduce(unsigned &wg_size, unsigned &divisor)
{
if (divisor > 1 && wg_size >= divisor)
{
wg_size /= divisor;
divisor = 1;
}
else if (divisor > 1 && wg_size < divisor)
{
divisor /= wg_size;
wg_size = 1;
}
}
static unsigned radix_to_wg_z(unsigned radix)
{
switch (radix)
{
case 16:
return 4;
case 64:
return 8;
default:
return 1;
}
}
static Radix build_radix(unsigned Nx, unsigned Ny,
Mode mode, unsigned vector_size, bool shared_banked, unsigned radix,
WorkGroupSize size,
bool pow2_stride)
{
unsigned wg_x = 0, wg_y = 0;
if (Ny == 1 && size.y > 1)
{
throw logic_error("WorkGroupSize.y must be 1, when Ny == 1.\n");
}
// To avoid too many threads per workgroup due to workgroup_size_z,
// try to divide workgroup_size_y, then workgroup_size_x.
// TODO: Make a better constraint solver which takes into account cache line sizes,
// and image swizzling patterns, etc ... Not that critical though, since wisdom interface
// will find the optimal options despite this.
unsigned divisor = size.z;
reduce(size.y, divisor);
reduce(size.x, divisor);
switch (mode)
{
case Vertical:
// If we have pow2_stride, we need to transform 2^n + 1 elements horizontally,
// so just add a single workgroup in X.
// We pad by going up to pow2 stride anyways.
// We will transform some garbage,
// but it's better than transforming close to double the amount.
wg_x = (2 * Nx) / (vector_size * size.x) + pow2_stride;
wg_y = Ny / (size.y * radix);
break;
case VerticalDual:
vector_size = max(vector_size, 4u);
wg_x = (4 * Nx) / (vector_size * size.x);
wg_y = Ny / (size.y * radix);
break;
case Horizontal:
wg_x = (2 * Nx) / (vector_size * radix * size.x);
wg_y = Ny / size.y;
break;
case HorizontalDual:
vector_size = max(vector_size, 4u);
wg_x = (4 * Nx) / (vector_size * radix * size.x);
wg_y = Ny / size.y;
break;
default:
assert(0);
}
return { size, wg_x, wg_y, radix, vector_size, shared_banked };
}
// Resolve radices are simpler, and don't yet support different vector sizes, etc.
static Radix build_resolve_radix(unsigned Nx, unsigned Ny, WorkGroupSize size)
{
return { size, Nx / size.x, Ny / size.y, 2, 2, false };
}
// Smaller FFT with larger workgroups are not always possible to create.
static bool is_radix_valid(unsigned Nx, unsigned Ny,
Mode mode, unsigned vector_size, unsigned radix,
WorkGroupSize size,
bool pow2_stride)
{
auto res = build_radix(Nx, Ny,
mode, vector_size, false, radix,
size,
pow2_stride);
return res.num_workgroups_x > 0 && res.num_workgroups_y > 0;
}
static double find_cost(unsigned Nx, unsigned Ny, Mode mode, unsigned radix,
const FFTOptions &options, const FFTWisdom &wisdom)
{
auto opt = wisdom.find_optimal_options(Nx, Ny, radix, mode, SSBO, SSBO, options.type);
// Return a very rough estimate if we cannot find cost.
// The cost functions generated here are expected to be huge,
// always much larger than true cost functions.
// The purpose of this is to give a strong bias towards radices we have wisdom for.
// We also give a bias towards larger radices, since they are generally more BW efficient.
return opt ? opt->first.cost : Nx * Ny * (log2(float(radix)) + 2.0f);
}
struct CostPropagate
{
CostPropagate() = default;
CostPropagate(double cost, vector<unsigned> radices)
: cost(cost), radices(move(radices)) {}
void merge_if_better(const CostPropagate &a, const CostPropagate &b)
{
double new_cost = a.cost + b.cost;
if ((cost == 0.0 || new_cost < cost) && a.cost != 0.0 && b.cost != 0.0)
{
cost = new_cost;
radices = a.radices;
radices.insert(end(radices), begin(b.radices), end(b.radices));
}
}
double cost = 0.0;
vector<unsigned> radices;
};
static vector<Radix> split_radices(unsigned Nx, unsigned Ny, Mode mode, Target input_target, Target output_target,
const FFTOptions &options,
bool pow2_stride, const FFTWisdom &wisdom, double &accumulate_cost)
{
unsigned N;
switch (mode)
{
case Vertical:
case VerticalDual:
N = Ny;
break;
case Horizontal:
case HorizontalDual:
N = Nx;
break;
default:
return {};
}
// N == 1 is for things like Nx1 transforms where we don't do any vertical transforms.
if (N == 1)
{
return {};
}
// Treat cost 0.0 as invalid.
double cost_table[8] = {0.0};
CostPropagate cost_propagate[32];
// Fill table with fastest known ways to do radix 4, radix 8, radix 16, and 64.
// We'll then find the optimal subdivision which has the lowest additive cost.
cost_table[2] = find_cost(Nx, Ny, mode, 4, options, wisdom);
cost_table[3] = find_cost(Nx, Ny, mode, 8, options, wisdom);
cost_table[4] = find_cost(Nx, Ny, mode, 16, options, wisdom);
cost_table[6] = find_cost(Nx, Ny, mode, 64, options, wisdom);
auto is_valid = [&](unsigned radix) -> bool {
unsigned workgroup_size_z = radix_to_wg_z(radix);
auto &opt = wisdom.find_optimal_options_or_default(Nx, Ny, radix, mode, SSBO, SSBO, options);
// We don't want pow2_stride to round up a very inefficient work group and make the is_valid test pass.
return is_radix_valid(Nx, Ny,
mode, opt.vector_size, radix,
{ opt.workgroup_size_x, opt.workgroup_size_y, workgroup_size_z },
false);
};
// If our work-space is too small to allow certain radices, we disable them from consideration here.
for (unsigned i = 2; i <= 6; i++)
{
// Don't check the composite radix.
if (i == 5)
{
continue;
}
if (is_valid(1 << i))
{
cost_propagate[i] = CostPropagate(cost_table[i], { 1u << i });
}
}
// Now start bubble this up all the way to N, starting from radix 16.
for (unsigned i = 4; (1u << i) <= N; i++)
{
auto &target = cost_propagate[i];
for (unsigned r = 2; i - r >= r; r++)
{
target.merge_if_better(cost_propagate[r], cost_propagate[i - r]);
}
if ((1u << i) == N && target.cost == 0.0)
{
throw logic_error("There is no possible subdivision ...\n");
}
}
// Ensure that the radix splits are sensible.
// A radix-N non p-1 transform mandates that p factor is at least N.
// Sort the splits so that larger radices come first.
// For composite radices like 16 and 64, they are built with 4x4 and 8x8, so we only
// need p factors for 4 and 8 for those cases.
// The cost function doesn't depend in which order we split the radices.
auto &cost = cost_propagate[unsigned(log2(float(N)))];
auto radices = move(cost.radices);
sort(begin(radices), end(radices), greater<unsigned>());
if (accumulate(begin(radices), end(radices), 1u, multiplies<unsigned>()) != N)
{
throw logic_error("Radix splits are invalid.");
}
vector<Radix> radices_out;
radices_out.reserve(radices.size());
// Fill in the structs with all information.
for (auto radix : radices)
{
bool first = radices_out.empty();
bool last = radices_out.size() + 1 == radices.size();
// Use known performance options as a fallback.
// We used SSBO -> SSBO cost functions to find the optimal radix splits,
// but replace first and last options with Image -> SSBO / SSBO -> Image cost functions if appropriate.
auto &orig_opt = wisdom.find_optimal_options_or_default(Nx, Ny, radix, mode, SSBO, SSBO, options);
auto &opts = wisdom.find_optimal_options_or_default(Nx, Ny, radix, mode,
first ? input_target : SSBO,
last ? output_target : SSBO,
{ orig_opt, options.type });
radices_out.push_back(build_radix(Nx, Ny,
mode, opts.vector_size, opts.shared_banked, radix,
{ opts.workgroup_size_x, opts.workgroup_size_y, radix_to_wg_z(radix) },
pow2_stride));
}
accumulate_cost += cost.cost;
return radices_out;
}
Program* ProgramCache::find_program(const Parameters ¶meters) const
{
auto itr = programs.find(parameters);
if (itr != end(programs))
{
return itr->second.get();
}
else
{
return nullptr;
}
}
void ProgramCache::insert_program(const Parameters ¶meters, std::unique_ptr<Program> program)
{
programs[parameters] = move(program);
}
Program* FFT::get_program(const Parameters ¶ms)
{
Program *prog = cache->find_program(params);
if (!prog)
{
auto newprog = build_program(params);
if (!newprog)
{
throw runtime_error("Failed to compile shader.\n");
}
prog = newprog.get();
cache->insert_program(params, move(newprog));
}
return prog;
}
static inline unsigned mode_to_input_components(Mode mode)
{
switch (mode)
{
case HorizontalDual:
case VerticalDual:
return 4;
case Horizontal:
case Vertical:
case ResolveComplexToReal:
return 2;
case ResolveRealToComplex:
return 1;
default:
return 0;
}
}
FFT::FFT(Context *context, unsigned Nx, unsigned Ny,
unsigned radix, unsigned p,
Mode mode, Target input_target, Target output_target,
std::shared_ptr<ProgramCache> program_cache, const FFTOptions &options)
: context(context), cache(move(program_cache)), size_x(Nx), size_y(Ny)
{
set_texture_offset_scale(0.5f / Nx, 0.5f / Ny, 1.0f / Nx, 1.0f / Ny);
if (!Nx || !Ny || (Nx & (Nx - 1)) || (Ny & (Ny - 1)))
{
throw logic_error("FFT size is not POT.");
}
if (p != 1 && input_target != SSBO)
{
throw logic_error("P != 1 only supported with SSBO as input.");
}
if (p < radix && output_target != SSBO)
{
throw logic_error("P < radix only supported with SSBO as output.");
}
// We don't really care about transform direction since it's just a matter of sign-flipping twiddles,
// but we have to obey some fundamental assumptions of resolve passes.
Direction direction = mode == ResolveComplexToReal ? Inverse : Forward;
Radix res;
if (mode == ResolveRealToComplex || mode == ResolveComplexToReal)
{
res = build_resolve_radix(Nx, Ny, { options.performance.workgroup_size_x, options.performance.workgroup_size_y, 1 });
}
else
{
res = build_radix(Nx, Ny,
mode, options.performance.vector_size, options.performance.shared_banked, radix,
{ options.performance.workgroup_size_x, options.performance.workgroup_size_y, radix_to_wg_z(radix) },
false);
}
const Parameters params = {
res.size.x,
res.size.y,
res.size.z,
res.radix,
res.vector_size,
direction,
mode,
input_target,
output_target,
p == 1,
res.shared_banked,
options.type.fp16, options.type.input_fp16, options.type.output_fp16,
options.type.normalize,
};
if (res.num_workgroups_x == 0 || res.num_workgroups_y == 0)
{
throw logic_error("Invalid workgroup sizes for this radix.");
}
unsigned uv_scale_x = res.vector_size / mode_to_input_components(mode);
const Pass pass = {
params,
res.num_workgroups_x, res.num_workgroups_y,
uv_scale_x,
next_pow2(res.num_workgroups_x * params.workgroup_size_x),
get_program(params),
};
passes.push_back(pass);
}
static inline void print_radix_splits(Context *context, const vector<Radix> radices[2])
{
context->log("Transform #1\n");
for (auto &radix : radices[0])
{
context->log(" Size: (%u, %u, %u)\n",
radix.size.x, radix.size.y, radix.size.z);
context->log(" Dispatch: (%u, %u)\n",
radix.num_workgroups_x, radix.num_workgroups_y);
context->log(" Radix: %u\n",
radix.radix);
context->log(" VectorSize: %u\n\n",
radix.vector_size);
}
context->log("Transform #2\n");
for (auto &radix : radices[1])
{
context->log(" Size: (%u, %u, %u)\n",
radix.size.x, radix.size.y, radix.size.z);
context->log(" Dispatch: (%u, %u)\n",
radix.num_workgroups_x, radix.num_workgroups_y);
context->log(" Radix: %u\n",
radix.radix);
context->log(" VectorSize: %u\n\n",
radix.vector_size);
}
}
static inline unsigned type_to_input_components(Type type)
{
switch (type)
{
case ComplexToComplex:
case ComplexToReal:
return 2;
case RealToComplex:
return 1;
case ComplexToComplexDual:
return 4;
default:
return 0;
}
}
FFT::FFT(Context *context, unsigned Nx, unsigned Ny,
Type type, Direction direction, Target input_target, Target output_target,
std::shared_ptr<ProgramCache> program_cache, const FFTOptions &options, const FFTWisdom &wisdom)
: context(context), cache(move(program_cache)), size_x(Nx), size_y(Ny)
{
set_texture_offset_scale(0.5f / Nx, 0.5f / Ny, 1.0f / Nx, 1.0f / Ny);
size_t temp_buffer_size = Nx * Ny * sizeof(float) * (type == ComplexToComplexDual ? 4 : 2);
temp_buffer_size >>= options.type.output_fp16;
temp_buffer = context->create_buffer(nullptr, temp_buffer_size, AccessStreamCopy);
if (output_target != SSBO)
{
temp_buffer_image = context->create_buffer(nullptr, temp_buffer_size, AccessStreamCopy);
}
bool expand = false;
if (type == ComplexToReal || type == RealToComplex)
{
// If we're doing C2R or R2C, we'll need double the scratch memory,
// so make sure we're dividing Nx *after* allocating.
Nx /= 2;
expand = true;
}
// Sanity checks.
if (!Nx || !Ny || (Nx & (Nx - 1)) || (Ny & (Ny - 1)))
{
throw logic_error("FFT size is not POT.");
}
if (type == ComplexToReal && direction == Forward)
{
throw logic_error("ComplexToReal transforms requires inverse transform.");
}
if (type == RealToComplex && direction != Forward)
{
throw logic_error("RealToComplex transforms requires forward transform.");
}
if (type == RealToComplex && input_target == Image)
{
throw logic_error("Input real-to-complex must use ImageReal target.");
}
if (type == ComplexToReal && output_target == Image)
{
throw logic_error("Output complex-to-real must use ImageReal target.");
}
vector<Radix> radices[2];
Mode modes[2];
Target targets[4];
switch (direction)
{
case Forward:
modes[0] = type == ComplexToComplexDual ? HorizontalDual : Horizontal;
modes[1] = type == ComplexToComplexDual ? VerticalDual : Vertical;
targets[0] = input_target;
targets[1] = Ny > 1 ? SSBO : output_target;
targets[2] = targets[1];
targets[3] = output_target;
radices[0] = split_radices(Nx, Ny, modes[0], targets[0], targets[1], options, false, wisdom, cost);
radices[1] = split_radices(Nx, Ny, modes[1], targets[2], targets[3], options, expand, wisdom, cost);
break;
case Inverse:
case InverseConvolve:
modes[0] = type == ComplexToComplexDual ? VerticalDual : Vertical;
modes[1] = type == ComplexToComplexDual ? HorizontalDual : Horizontal;
targets[0] = input_target;
targets[1] = Ny > 1 ? SSBO : input_target;
targets[2] = targets[1];
targets[3] = output_target;
radices[0] = split_radices(Nx, Ny, modes[0], targets[0], targets[1], options, expand, wisdom, cost);
radices[1] = split_radices(Nx, Ny, modes[1], targets[2], targets[3], options, false, wisdom, cost);
break;
}
#if 0
print_radix_splits(context, radices);
#endif
passes.reserve(radices[0].size() + radices[1].size() + expand);
unsigned index = 0;
unsigned last_index = (radices[1].empty() && !expand) ? 0 : 1;
for (auto &radix_direction : radices)
{
unsigned p = 1;
unsigned i = 0;
for (auto &radix : radix_direction)
{
// If this is the last pass and we're writing to an image, use a special shader variant.
bool last_pass = index == last_index && i == radix_direction.size() - 1;
bool input_fp16 = passes.empty() ? options.type.input_fp16 : options.type.output_fp16;
Target out_target = last_pass ? output_target : SSBO;
Target in_target = passes.empty() ? input_target : SSBO;
Direction dir = direction == InverseConvolve && !passes.empty() ? Inverse : direction;
unsigned uv_scale_x = radix.vector_size / type_to_input_components(type);
const Parameters params = {
radix.size.x,
radix.size.y,
radix.size.z,
radix.radix,
radix.vector_size,
dir,
modes[index],
in_target,
out_target,
p == 1,
radix.shared_banked,
options.type.fp16, input_fp16, options.type.output_fp16,
options.type.normalize,
};
const Pass pass = {
params,
radix.num_workgroups_x, radix.num_workgroups_y,
uv_scale_x,
next_pow2(radix.num_workgroups_x * params.workgroup_size_x),
get_program(params),
};
passes.push_back(pass);
p *= radix.radix;
i++;
}
// After the first transform direction, inject either a real-to-complex resolve or complex-to-real resolve.
// This way, we avoid having special purpose transforms for all FFT variants.
if (index == 0 && (type == ComplexToReal || type == RealToComplex))
{
bool input_fp16 = passes.empty() ? options.type.input_fp16 : options.type.output_fp16;
bool last_pass = radices[1].empty();
Direction dir = direction == InverseConvolve && !passes.empty() ? Inverse : direction;
Target in_target = passes.empty() ? input_target : SSBO;
Target out_target = last_pass ? output_target : SSBO;
Mode mode = type == ComplexToReal ? ResolveComplexToReal : ResolveRealToComplex;
unsigned uv_scale_x = 1;
auto base_opts = options;
base_opts.type.input_fp16 = input_fp16;
auto &opts = wisdom.find_optimal_options_or_default(Nx, Ny, 2, mode, in_target, out_target, base_opts);
auto res = build_resolve_radix(Nx, Ny, { opts.workgroup_size_x, opts.workgroup_size_y, 1 });
const Parameters params = {
res.size.x,
res.size.y,
res.size.z,
res.radix,
res.vector_size,
dir,
mode,
in_target,
out_target,
true,
false,
base_opts.type.fp16, base_opts.type.input_fp16, base_opts.type.output_fp16,
base_opts.type.normalize,
};
const Pass pass = {
params,
Nx / res.size.x,
Ny / res.size.y,
uv_scale_x,
next_pow2(Nx),
get_program(params),
};
passes.push_back(pass);
}
index++;
}
}
string FFT::load_shader_string(const char *path)
{
ifstream file(path);
if (!file.good())
{
throw runtime_error("Failed to load shader file from disk.\n");
}
stringstream buf;
buf << file.rdbuf();
return buf.str();
}
void FFT::store_shader_string(const char *path, const string &source)
{
ofstream file(path);
file.write(source.data(), source.size());
}
unique_ptr<Program> FFT::build_program(const Parameters ¶ms)
{
string str;
str.reserve(16 * 1024);
#if 0
context->log("Building program:\n");
context->log(
" WG_X: %u\n"
" WG_Y: %u\n"
" WG_Z: %u\n"
" P1: %u\n"
" Radix: %u\n"
" Dir: %d\n"
" Mode: %u\n"
" InTarget: %u\n"
" OutTarget: %u\n"
" FP16: %u\n"
" InFP16: %u\n"
" OutFP16: %u\n"
" Norm: %u\n",
params.workgroup_size_x,
params.workgroup_size_y,
params.workgroup_size_z,
params.p1,
params.radix,
params.direction,
params.mode,
params.input_target,
params.output_target,
params.fft_fp16,
params.input_fp16,
params.output_fp16,
params.fft_normalize);
#endif
if (params.p1)
{
str += "#define FFT_P1\n";
}
if (params.fft_fp16)
{
str += "#define FFT_FP16\n";
}
if (params.input_fp16)
{
str += "#define FFT_INPUT_FP16\n";
}
if (params.output_fp16)
{
str += "#define FFT_OUTPUT_FP16\n";
}
if (params.fft_normalize)
{
str += "#define FFT_NORMALIZE\n";
}
if (params.direction == InverseConvolve)
{
str += "#define FFT_CONVOLVE\n";
}
str += params.shared_banked ? "#define FFT_SHARED_BANKED 1\n" : "#define FFT_SHARED_BANKED 0\n";
str += params.direction == Forward ? "#define FFT_FORWARD\n" : "#define FFT_INVERSE\n";
str += string("#define FFT_RADIX ") + to_string(params.radix) + "\n";
unsigned vector_size = params.vector_size;
switch (params.mode)
{
case VerticalDual:
str += "#define FFT_DUAL\n";
str += "#define FFT_VERT\n";
break;
case Vertical:
str += "#define FFT_VERT\n";
break;
case HorizontalDual:
str += "#define FFT_DUAL\n";
str += "#define FFT_HORIZ\n";
break;
case Horizontal:
str += "#define FFT_HORIZ\n";
break;
case ResolveRealToComplex:
str += "#define FFT_RESOLVE_REAL_TO_COMPLEX\n";
str += "#define FFT_HORIZ\n";
vector_size = 2;
break;
case ResolveComplexToReal:
str += "#define FFT_RESOLVE_COMPLEX_TO_REAL\n";
str += "#define FFT_HORIZ\n";
vector_size = 2;
break;
}
switch (params.input_target)
{
case ImageReal:
str += "#define FFT_INPUT_REAL\n";
// Fallthrough
case Image:
str += "#define FFT_INPUT_TEXTURE\n";
break;
default:
break;
}
switch (params.output_target)
{
case ImageReal:
str += "#define FFT_OUTPUT_REAL\n";
// Fallthrough
case Image:
str += "#define FFT_OUTPUT_IMAGE\n";
break;
default:
break;
}
switch (vector_size)
{
case 2:
str += "#define FFT_VEC2\n";
break;
case 4:
str += "#define FFT_VEC4\n";
break;
case 8:
str += "#define FFT_VEC8\n";
break;
}
str += string("layout(local_size_x = ") +
to_string(params.workgroup_size_x) +
", local_size_y = " +
to_string(params.workgroup_size_y) +
", local_size_z = " +
to_string(params.workgroup_size_z) +
") in;\n";
#ifdef GLFFT_SHADER_FROM_FILE
str += load_shader_string("glfft/glsl/fft_common.comp");
switch (params.radix)
{
case 4:
str += load_shader_string("glfft/glsl/fft_radix4.comp");
break;
case 8:
str += load_shader_string("glfft/glsl/fft_radix8.comp");
break;
case 16:
str += load_shader_string("glfft/glsl/fft_radix4.comp");
str += load_shader_string("glfft/glsl/fft_shared.comp");
str += load_shader_string("glfft/glsl/fft_radix16.comp");
break;
case 64:
str += load_shader_string("glfft/glsl/fft_radix8.comp");
str += load_shader_string("glfft/glsl/fft_shared.comp");
str += load_shader_string("glfft/glsl/fft_radix64.comp");
break;
}
str += load_shader_string("glfft/glsl/fft_main.comp");
#else
str += Blob::fft_common_source;
switch (params.radix)
{
case 4:
str += Blob::fft_radix4_source;
break;
case 8:
str += Blob::fft_radix8_source;
break;
case 16:
str += Blob::fft_radix4_source;
str += Blob::fft_shared_source;
str += Blob::fft_radix16_source;
break;
case 64:
str += Blob::fft_radix8_source;
str += Blob::fft_shared_source;
str += Blob::fft_radix64_source;
break;
}
str += Blob::fft_main_source;
#endif
auto prog = context->compile_compute_shader(str.c_str());
if (!prog)
{
puts(str.c_str());
}
#if 0
char shader_path[1024];
snprintf(shader_path, sizeof(shader_path), "glfft_shader_radix%u_first%u_mode%u_in_target%u_out_target%u.comp.src",
params.radix, params.p1, params.mode, unsigned(params.input_target), unsigned(params.output_target));
store_shader_string(shader_path, str);
#endif
return prog;
}
double FFT::bench(Context *context, Resource *output, Resource *input,
unsigned warmup_iterations, unsigned iterations, unsigned dispatches_per_iteration, double max_time)
{
context->wait_idle();
auto *cmd = context->request_command_buffer();
for (unsigned i = 0; i < warmup_iterations; i++)
{
process(cmd, output, input);
}
context->submit_command_buffer(cmd);
context->wait_idle();
unsigned runs = 0;
double start_time = context->get_time();
double total_time = 0.0;
for (unsigned i = 0; i < iterations && (((context->get_time() - start_time) < max_time) || i == 0); i++)
{
#ifdef GLFFT_CLI_ASYNC
check_async_cancel();
#endif
auto *cmd = context->request_command_buffer();
double iteration_start = context->get_time();
for (unsigned d = 0; d < dispatches_per_iteration; d++)
{
process(cmd, output, input);
cmd->barrier();
runs++;
}
context->submit_command_buffer(cmd);
context->wait_idle();
double iteration_end = context->get_time();
total_time += iteration_end - iteration_start;
}
return total_time / runs;
}
void FFT::process(CommandBuffer *cmd, Resource *output, Resource *input, Resource *input_aux)
{
if (passes.empty())
{
return;
}