-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcenternet_resnet50_140e_mydet.py
130 lines (112 loc) · 4.01 KB
/
centernet_resnet50_140e_mydet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
_base_ = './centernet_resnet50_dcnv2_140e_coco.py'
# model settings
model = dict(
neck=dict(use_dcn=True),
bbox_head=dict(num_classes=3,))
# data settings
# dataset type
dataset_type = 'CocoDataset'
# set the classes according to mydet
classes = ('rust', 'scratch', 'spot')
# We fixed the incorrect img_norm_cfg problem in the source code.
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# train pipeline
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True, color_type='color'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PhotoMetricDistortion',
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18),
dict(
type='RandomCenterCropPad',
crop_size=(4000, 2400),
ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3),
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True,
test_pad_mode=None),
dict(type='Resize', img_scale=(4000, 2400), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
# test pipeline
test_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(
type='MultiScaleFlipAug',
flip=False,
scale_factor=1.0,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(
type='RandomCenterCropPad',
ratios=None,
border=None,
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True,
test_mode=True,
test_pad_mode=['logical_or', 31],
test_pad_add_pix=1),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
meta_keys=('filename', 'ori_filename', 'ori_shape',
'img_shape', 'pad_shape', 'scale_factor', 'flip',
'flip_direction', 'img_norm_cfg', 'border'),
keys=['img'])
])
]
# Use RepeatDataset to speed up training
data = dict(
samples_per_gpu=1,
workers_per_gpu=1,
train=dict(
_delete_=True,
type='RepeatDataset',
times=5,
dataset=dict(
type=dataset_type,
img_prefix='data/images/',
classes=classes,
ann_file='data/annotations/train2017.json',
pipeline=train_pipeline)),
val=dict(
img_prefix='data/images/',
classes=classes,
ann_file='data/annotations/val2017.json',
pipeline=test_pipeline),
test=dict(
img_prefix='data/images/',
classes=classes,
ann_file='data/annotations/test2017.json',
pipeline=test_pipeline))
# optimizer LR = 0.02(default)
# Based on the default settings of modern detectors, the SGD effect is better
# than the Adam in the source code, so we use SGD default settings and
# if you use adam+lr5e-4, the map is 29.1.
# set LR according to the original paper's settings
# optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (16 samples per GPU)
auto_scale_lr = dict(enable=True, base_batch_size=128)
# learning policy
# Based on the default settings of modern detectors, we added warmup settings.
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=1000,
warmup_ratio=1.0 / 1000,
step=[38, 47]) # the real step is [24*5, 33*5], this settings: [38*5, 47*5]
runner = dict(max_epochs=50) # the real epoch is 36*5=180, this settings: 50 * 5 = 250
# set checkpoints save every: 5 epochs
checkpoint_config = dict(interval=5)