-
Notifications
You must be signed in to change notification settings - Fork 0
/
language_model.py
188 lines (157 loc) · 6.19 KB
/
language_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
import torch.nn
from torch.nn import functional as F
batch_size = 64
block_size = 256
max_iters = 5_000
eval_interval = 500
learning_rate = 3e-4
device = 'mps' if torch.backends.mps.is_available() else 'cpu'
# mps has bug for large models right now
eval_iters = 200
num_embedding = 128
num_layers = 6
num_heads = 6
dropout = 0.2
torch.manual_seed(1337)
# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
with open("input.txt", "r", encoding="utf-8") as f:
text = f.read()
chars = sorted(set(text))
vocab_size = len(chars)
s_to_i = {ch: i for i, ch in enumerate(chars)}
i_to_s = {i: ch for i, ch in enumerate(chars)}
encode = lambda s: list(map(s_to_i.get, s))
decode = lambda l: "".join(map(i_to_s.get, l))
data = torch.tensor(encode(text), dtype=torch.long, device=device)
n = int(0.9 * len(data))
train_data = data[:n]
val_data = data[n:]
def get_batch(split):
data = train_data if split == "train" else val_data
ix = torch.randint(len(data) - block_size, (batch_size,), device=device)
x = torch.stack([data[i: i + block_size] for i in ix])
y = torch.stack([data[i + 1: i + block_size + 1] for i in ix])
return x.to(device), y.to(device)
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(torch.nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = torch.nn.Linear(num_embedding, head_size, bias=False)
self.query = torch.nn.Linear(num_embedding, head_size, bias=False)
self.value = torch.nn.Linear(num_embedding, head_size, bias=False)
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size, device=device)))
self.dropout = torch.nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2, -1) * (k.shape[-1] ** 0.5)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf"))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
return wei @ v
class MultiHeadAttention(torch.nn.Module):
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = torch.nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = torch.nn.Linear(head_size * num_heads, num_embedding)
self.dropout = torch.nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
return self.dropout(self.proj(out))
class FeedForward(torch.nn.Module):
def __init__(self, num_embedding):
super().__init__()
self.net = torch.nn.Sequential(
torch.nn.Linear(num_embedding, 4 * num_embedding),
torch.nn.ReLU(),
torch.nn.Linear(4 * num_embedding, num_embedding),
torch.nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Block(torch.nn.Module):
def __init__(self, num_embedding, num_heads):
super().__init__()
head_size = num_embedding // num_heads
self.sa = MultiHeadAttention(num_heads, head_size)
self.ffwd = FeedForward(num_embedding)
self.ln1 = torch.nn.LayerNorm(num_embedding)
self.ln2 = torch.nn.LayerNorm(num_embedding)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class LanguageModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = torch.nn.Embedding(vocab_size, num_embedding)
self.position_embedding_table = torch.nn.Embedding(block_size, num_embedding)
self.blocks = torch.nn.Sequential(*(Block(num_embedding, num_heads=num_heads) for _ in range(num_layers)))
self.ln_f = torch.nn.LayerNorm(num_embedding)
self.lm_head = torch.nn.Linear(num_embedding, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
token_embeddings = self.token_embedding_table(idx)
position_embeddings = self.position_embedding_table(torch.arange(T, device=device))
x = position_embeddings + token_embeddings
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
logits, _ = self(idx[:, -block_size:])
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
model = LanguageModel()
model = m = model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
import os
model_path = "weights.pt"
try:
if os.path.exists(model_path):
with open(model_path, 'rb') as f:
model.load_state_dict(torch.load(f))
for i in range(max_iters):
if i % eval_interval == 0:
losses = estimate_loss()
print(f'step {i}: train loss {losses["train"]:.4f}, val loss {losses["val"]:.4f}')
xb, yb = get_batch("train")
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
losses = estimate_loss()
print(f'step {max_iters - 1}: train loss {losses["train"]:.4f}, val loss {losses["val"]:.4f}')
except KeyboardInterrupt:
with open(model_path, 'wb') as f:
torch.save(model.state_dict(), f)
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
with open(model_path, 'wb') as f:
torch.save(model.state_dict(), f)