-
Notifications
You must be signed in to change notification settings - Fork 0
/
bigram.py
99 lines (79 loc) · 2.86 KB
/
bigram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import torch.nn
from torch.nn import functional as F
batch_size = 32
block_size = 8
max_iters = 10_000
eval_interval = 340
learning_rate = 1e-2
device = 'mps' if torch.backends.mps.is_available() else 'cpu'
eval_iters = 200
torch.manual_seed(1337)
# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
with open("input.txt", "r", encoding="utf-8") as f:
text = f.read()
chars = sorted(set(text))
vocab_size = len(chars)
s_to_i = {ch: i for i, ch in enumerate(chars)}
i_to_s = {i: ch for i, ch in enumerate(chars)}
encode = lambda s: list(map(s_to_i.get, s))
decode = lambda l: "".join(map(i_to_s.get, l))
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9 * len(data))
train_data = data[:n]
val_data = data[n:]
def get_batch(split):
data = train_data if split == "train" else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i: i + block_size] for i in ix])
y = torch.stack([data[i + 1: i + block_size + 1] for i in ix])
return x.to(device), y.to(device)
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class BigramModel(torch.nn.Module):
def __init__(self, vocab_size):
super().__init__()
self.token_embedding_table = torch.nn.Embedding(vocab_size, vocab_size)
def forward(self, idx, targets=None):
logits = self.token_embedding_table(idx)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
logits, _ = self(idx)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
model = BigramModel(vocab_size)
m = model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for i in range(max_iters):
if i % eval_interval == 0:
losses = estimate_loss()
print(f'step {i}: train loss {losses["train"]:.4f}, val loss {losses["val"]:.4f}')
xb, yb = get_batch("train")
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))