-
Notifications
You must be signed in to change notification settings - Fork 0
/
keras_training.py
executable file
·294 lines (238 loc) · 9.26 KB
/
keras_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix
import seaborn as sn
import pandas as pd
import matplotlib.pyplot as plt
import transformer
import keras
import tensorflow as tf
from keras.callbacks import ModelCheckpoint
from keras import layers
from HART import HART, mobileHART_XS, mobileHART_XXS
from transformer2 import Transformer
#from models import LSTMMultiClass, TransformerClassifier, LSTMBinary, CNN_1D, CNN_1D_multihead
training = True
balanced_dataset = False
binary_classification = False
current_action = 'ASSEMBLY1'
def oneVsAll(labels, int_labels, label):
'''Converts a multi-class problem into a binary problem by setting all labels'''
unique_labels = np.unique(labels)
print(unique_labels)
int_label = np.argwhere(unique_labels == label)[0][0]
mask = int_labels == int_label
int_labels[mask] = 0
int_labels[~mask] = 1
return int_labels
def ignore_features(dataset):
'''Excludes gyroscope data from the dataset'''
mask = np.ones((24), dtype=bool)
mask[[3,4,5,9,10,11,15,16,17,21,22,23]] = False
dataset = dataset[:, :, mask]
return dataset
def get_accuracy(pred, test):
'''Returns the accuracy of the model on the multiclass problem'''
correct = 0
wrong = 0
for p, t in zip(np.argmax(pred,1), test):
if p == t:
correct+=1
else:
wrong+=1
return (correct/test.shape[0])*100
def normalize(data):
'''Normalizes the data by dividing each feature by its maximum value'''
maxes = np.amax(data, axis=(0,1))
# mins = np.amin(data, axis=(0,1))
# return (2*(data-mins)/(maxes-mins))-1
return data/maxes
def full_scale_normalize(data):
acceleration_idxs = [0,1,2,6,7,8,12,13,14,18,19,20]
gyroscope_idxs = [3,4,5,9,10,11,15,16,17,21,22,23]
# 1g equals 8192. The full range is 2g
data[:,:,acceleration_idxs] = data[:,:,acceleration_idxs] / 16384.0
data[:,:,gyroscope_idxs] = data[:,:,gyroscope_idxs] / 100.0
return data
def add_feature_profiles(dataset):
'''Adds the module of the 3D vector of each feature to the dataset'''
dataset = dataset.reshape(dataset.shape[0], dataset.shape[1], -1, 3)
module = np.sqrt(np.sum(dataset**2, axis=3))
dataset = np.concatenate((dataset, module[..., None]), axis=3)
return dataset.reshape(dataset.shape[0], dataset.shape[1], -1)
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
print("\n--- Data Loading ---")
if balanced_dataset:
print("\n--- Loading Balanced Dataset ---")
train_dataset = np.load('balanced_datasets/train_balanced_data(6750_500_24).npy').astype('float32')
train_labels = np.load('balanced_datasets/train_balanced_labels(6750_1).npy', allow_pickle=True)#.astype('int32')
# test_dataset = np.load('balanced_datasets/train_balanced_data.npy').astype('float32')
# test_labels = np.load('balanced_datasets/train_balanced_labels.npy', allow_pickle=True)#.astype('int32')
test_dataset = np.load('test_data_shape(1233_500_24).npy').astype('float32')
test_labels = np.load('test_labels_shape(1233_1).npy')
else:
print("\n--- Loading Unbalanced Dataset ---")
train_dataset = np.load('train_data_shape(4950_500_24).npy').astype('float32')
# dataset = torch.load('filename')
train_labels = np.load('train_labels_shape(4950_1).npy')
test_dataset = np.load('test_data_shape(1233_500_24).npy').astype('float32')
# dataset = torch.load('filename')
test_labels = np.load('test_labels_shape(1233_1).npy')
unique_labels = np.unique(train_labels)
print(unique_labels)
# Convert string labels to integer labels
label_encoder = LabelEncoder()
train_labels = label_encoder.fit_transform(train_labels.ravel())
test_labels = label_encoder.fit_transform(test_labels.ravel())
# if balanced_dataset:
# integer_labels = labels.ravel()
if binary_classification:
print("\n--- Reducing to a Binary Classification Problem ---")
integer_labels = oneVsAll(labels, integer_labels, current_action)
# if balanced_dataset:
# unique_labels = np.unique(integer_labels)
# dataset = ignore_features(dataset)
# dataset = add_feature_profiles(dataset)
# dataset = dataset[:,:,12:16]
print("Loaded dataset and labels: ")
# print(f'\t{dataset.shape=}')
print('TRAIN')
# print(f'\t{train_labels.shape=}')
print("Most populated class: ", unique_labels[np.argmax(np.bincount(test_labels))])
print('TEST')
# print(f'\t{test_labels.shape=}')
print("Most populated class: ", unique_labels[np.argmax(np.bincount(test_labels))])
train_dataset = full_scale_normalize(train_dataset)
test_dataset = full_scale_normalize(test_dataset)
print("\nSplitted dataset and labels: ")
print(f'\t{train_dataset.shape=}')
print(f'\t{test_dataset.shape=}')
print(f'\t{train_labels.shape=}')
print(f'\t{test_labels.shape=}')
print("\nSplitted dataset and labels: ")
print(f'\t{train_dataset.shape=}')
print(f'\t{test_dataset.shape=}')
print(f'\t{train_labels.shape=}')
print(f'\t{test_labels.shape=}')
print("\n--- Training ---")
# sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True))
# print(f'\nSetting torch device to: {sess=}')
# # print(device_lib.list_local_devices())
# print(tf.test.gpu_device_name())
# # tf.test.is_gpu_available(cuda_only=False, min_cuda_compute_capability=None)
# # config = tf.ConfigProto( device_count = {'GPU': 1 , 'CPU': 56} )
# # sess = tf.Session(config=config)
# keras.backend.set_session(sess)
# exit()
# Set device to CUDA if available, otherwise use CPU
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cpu')
# print(f'\nSetting torch device to: {device=}')
# x = torch.Tensor(train_dataset).to(device)
# y = torch.Tensor(train_labels).squeeze().long().to(device)
x = train_dataset
y = train_labels
x_test = test_dataset
y_test = test_labels
# x_test = torch.Tensor(test_dataset).to(device)
# y_test = torch.Tensor(test_labels).squeeze().long().to(device)
print(f'{x.shape=}')
print(f'{y.shape=}')
x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.2, random_state=42)
print(f'{x_train.shape=}')
print(f'{y_train.shape=}')
print(f'{x_val.shape=}')
print(f'{y_val.shape=}')
# Define hyperparameters
input_dim = train_dataset[0].shape[-1]
hidden_dim = 8
n_layers = 2
if binary_classification:
output_dim = 1
else:
output_dim = unique_labels
'''multihead cnn works best with 0.0005'''
'''singlehead cnn works best with 0.0001'''
lr = 0.0001
epochs = 200
batch_size = 32
dropout = 0.5
l2_lambda = 0.0001
# Set up early stopping
patience = 8
best_val_loss = float('inf')
counter = 0
print(f'\nHyperparameters: ')
print(f'\t{input_dim=}')
print(f'\t{hidden_dim=}')
print(f'\t{output_dim=}')
print(f'\t{lr=}')
print(f'\t{epochs=}')
print(f'\t{batch_size=}\n')
print(f'\t{l2_lambda=}\n')
print(f'\t{patience=}\n')
input_shape = x.shape[1:]
print(f'{input_shape=}')
print(f'{unique_labels.shape[0]=}')
# model = transformer.build_model(
# input_shape,
# head_size=256,
# num_heads=4,
# ff_dim=4,
# num_transformer_blocks=4,
# mlp_units=[128,64],
# mlp_dropout=0.4,
# dropout=0.2,
# n_classes=unique_labels.shape[0]
# )
# model = HART(input_shape, unique_labels.shape[0], dropout_rate=dropout, num_heads=6)
model = mobileHART_XS(input_shape, unique_labels.shape[0], dropout_rate=dropout)
model.compile(
loss="sparse_categorical_crossentropy",
optimizer=tf.keras.optimizers.Adam(learning_rate=lr),
metrics=["sparse_categorical_accuracy"],
)
model.summary()
callbacks = [keras.callbacks.EarlyStopping(patience=patience, restore_best_weights=True),
ModelCheckpoint('transformer.h5', monitor='val_loss', verbose=1, save_best_only=True, mode='min')]
if training:
model.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_val, y_val),
callbacks=callbacks,
)
else:
model = keras.models.load_model('transformer.h5')
model.evaluate(x_test, y_test, verbose=1)
y_pred = model.predict(x_test)
if binary_classification:
metric = BinaryAccuracy(device=torch.device('cuda'))
metric.update(y_pred.squeeze().cuda(), y_test.cuda())
acc = metric.compute()
else:
acc = get_accuracy(y_pred, y_test)
print("accuracy: ", acc)
# Build confusion matrix
if binary_classification:
y_pred = y_pred>0.5
y_pred = y_pred
cf_matrix = confusion_matrix(y_pred, y_test)
else:
cf_matrix = confusion_matrix(np.argmax(y_pred,1), y_test)
print(cf_matrix)
print(np.sum(cf_matrix, axis=1)[:, None])
cf_matrix = np.around(cf_matrix / np.sum(cf_matrix, axis=1)[:, None] * 100, decimals=1)
df_cm = pd.DataFrame(cf_matrix, index = [i for i in unique_labels],
columns = [i for i in unique_labels])
plt.figure(figsize = (12,7))
sn.heatmap(df_cm, annot=True, fmt='g', cmap='Blues')
if binary_classification:
plt.savefig(f'binary_models/{current_action}_cf.png')
else:
plt.savefig('output.png')