-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathRunVisualization.m
97 lines (68 loc) · 5.89 KB
/
RunVisualization.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
function RunVisualization(DataSetStartIndex, DataSetEndIndex, Method, RepType)
Methods = [cellstr('Random'), 'KShape'];
Types = [cellstr('ZExact'), 'Z5', 'Z10', 'Z20', 'Z99per', 'Z95per', 'Z90per', 'Z85per', 'Z80per'];
% first 2 values are '.' and '..' - UCR Archive 2018 version has 128 datasets
dir_struct = dir('/rigel/dsi/users/ikp2103/VLDBGRAIL/UCR2018/');
Datasets = {dir_struct(3:130).name};
% Sort Datasets
[Datasets, DSOrder] = sort(Datasets);
Results = zeros(length(Datasets),3);
for i = 1:length(Datasets)
if (i>=DataSetStartIndex & i<=DataSetEndIndex)
disp(['Dataset being processed: ', char(Datasets(i))]);
DS = LoadUCRdataset(char(Datasets(i)));
% Get Kernel Matrix
gamma = 10;
KM = dlmread( strcat( 'KernelMatricesSINK/',char(Datasets(i)),'/', char(Datasets(i)), '_SINK_Gamma_', num2str(gamma) ,'.kernelmatrix') );
tic;
[EigenVectors,ProjDataOriginal] = OriginalKPCA(KM);
RTOriginalKPCA = toc;
for rep = 1 : 10
rep
rng(rep);
% Extract Sample Points
ZExact = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Zexact') );
Z5 = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Ztop5') );
Z10 = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Ztop10') );
Z20 = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Ztop20') );
Z98per = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Z98per') );
Z95per = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Z95per') );
Z90per = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Z90per') );
Z85per = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Z85per') );
Z80per = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Z80per') );
tic;
if RepType == 1
[ApproxEigVectors,ProjDataApprox] = NystromKPCA(ZExact);
elseif RepType == 2
[ApproxEigVectors,ProjDataApprox] = NystromKPCA(Z5);
elseif RepType == 3
[ApproxEigVectors,ProjDataApprox] = NystromKPCA(Z10);
elseif RepType == 4
[ApproxEigVectors,ProjDataApprox] = NystromKPCA(Z20);
elseif RepType == 5
[ApproxEigVectors,ProjDataApprox] = NystromKPCA(Z98per);
elseif RepType == 6
[ApproxEigVectors,ProjDataApprox] = NystromKPCA(Z95per);
elseif RepType == 7
[ApproxEigVectors,ProjDataApprox] = NystromKPCA(Z90per);
elseif RepType == 8
[ApproxEigVectors,ProjDataApprox] = NystromKPCA(Z85per);
elseif RepType == 9
[ApproxEigVectors,ProjDataApprox] = NystromKPCA(Z80per);
end
RTApproximatelKPCA = toc;
dlmwrite( strcat( 'RunVisualizationVectors/','RESULTS_RunVisualization_', num2str(i), '_', num2str(i), '_', char(Methods(Method)), '_', char(Types(RepType)) ,'.Vectors'), ApproxEigVectors, 'delimiter', '\t');
% Evaluate SmplPoints in terms of clustering
% measures (e.g., SSE, RandIndex, NystromAppx)
%Error = Arccos dot(u,v)/(norm(u)*norm(v))
%AppxError = acos(dot(EigenVectors(:,1),ApproxEigVectors(:,1))/(norm(EigenVectors(:,1))*norm(ApproxEigVectors(:,1))));
AppxError = ( norm(ProjDataOriginal*ProjDataOriginal'-ProjDataApprox*ProjDataApprox','fro') );
ResultsTmp = [AppxError,RTApproximatelKPCA,RTOriginalKPCA];
%
Results(i,:) = Results(i,:) + ResultsTmp;
end
Results(i,:) = Results(i,:) ./ 10;
end
dlmwrite( strcat( 'RunVisualization/','RESULTS_RunVisualization_', num2str(DataSetStartIndex), '_', num2str(DataSetEndIndex), '_', char(Methods(Method)), '_', char(Types(RepType)) ,'.results'), Results, 'delimiter', '\t');
end
end