-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathRunClassificationOneNN.m
121 lines (92 loc) · 7.31 KB
/
RunClassificationOneNN.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
function RunClassificationOneNN(DataSetStartIndex, DataSetEndIndex, ClassificationMethod, Method, RepType, LBType)
ClassMethods = [cellstr('OneNN'), 'OneNNLB'];
Methods = [cellstr('Random'), 'KShape'];
Types = [cellstr('ZExact'), 'Z5', 'Z10', 'Z20', 'Z98per', 'Z95per', 'Z90per', 'Z85per', 'Z80per'];
LBTypes = [cellstr('FFTtopk'), 'FFTbestk', 'RepLearn', 'LBKeogh'];
% first 2 values are '.' and '..' - UCR Archive 2018 version has 128 datasets
dir_struct = dir('/rigel/dsi/users/ikp2103/VLDBGRAIL/UCR2018/');
Datasets = {dir_struct(3:130).name};
% Sort Datasets
[Datasets, DSOrder] = sort(Datasets);
Results = zeros(length(Datasets),3);
for i = 1:length(Datasets)
if (i>=DataSetStartIndex && i<=DataSetEndIndex)
disp(['Dataset being processed: ', char(Datasets(i))]);
DS = LoadUCRdataset(char(Datasets(i)));
% Get Kernel Matrix
%KM = dlmread( strcat( 'DATASETS/',char(Datasets(i)),'/', char(Datasets(i)), '_CCKernel_', num2str(gamma) ,'.kernelmatrix'));
%KM = dlmread( strcat( 'DATASETS/',char(Datasets(i)),'/', char(Datasets(i)), '_NCCc', '.distmatrix'));
%KM = DM2Kernel(KM);
DS.DTW_WindowPercentage = round(5/100*length(DS.Data(1,:)));
for rep = 1 : 1
rep
rng(rep);
% Extract Sample Points
TestVarianceNew = dlmread( strcat( 'RunTestVarianceApproximate/', 'RESULTS_RunTestVarianceApproximate_', char(Datasets(i)), '_', char(Methods(Method)), '_',num2str(rep) ,'.Results'));
gamma = TestVarianceNew(1);
%gamma = 5;
% Extract Sample Points
ZExact = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Zexact') );
Z5 = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Ztop5') );
Z10 = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Ztop10') );
Z20 = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Ztop20') );
Z98per = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Z98per') );
Z95per = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Z95per') );
Z90per = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Z90per') );
Z85per = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Z85per') );
Z80per = dlmread( strcat( 'REPRESENTATIONSGamma', num2str(gamma),'/',char(Datasets(i)),'/','RepLearningFixedSamples', '_', char(Methods(Method)), '_', num2str(rep) ,'.Z80per') );
tic;
if ClassificationMethod == 1
pruningpower=0;
if RepType == 1
acc = OneNNClassifierZREP(DS,ZExact);
elseif RepType == 2
acc = OneNNClassifierZREP(DS,Z5);
elseif RepType == 3
acc = OneNNClassifierZREP(DS,Z10);
elseif RepType == 4
acc = OneNNClassifierZREP(DS,Z20);
elseif RepType == 5
acc = OneNNClassifierZREP(DS,Z98per);
elseif RepType == 6
acc = OneNNClassifierZREP(DS,Z95per);
elseif RepType == 7
acc = OneNNClassifierZREP(DS,Z90per);
elseif RepType == 8
acc = OneNNClassifierZREP(DS,Z85per);
elseif RepType == 9
acc = OneNNClassifierZREP(DS,Z80per);
end
elseif ClassificationMethod == 2
if RepType == 1
[acc,pruningpower] = OneNNClassifierLB(DS,ZExact,LBType,gamma);
elseif RepType == 2
[acc,pruningpower] = OneNNClassifierLB(DS,Z5,LBType,gamma);
elseif RepType == 3
[acc,pruningpower] = OneNNClassifierLB(DS,Z10,LBType,gamma);
elseif RepType == 4
[acc,pruningpower] = OneNNClassifierLB(DS,Z20,LBType,gamma);
elseif RepType == 5
[acc,pruningpower] = OneNNClassifierLB(DS,Z98per,LBType,gamma);
elseif RepType == 6
[acc,pruningpower] = OneNNClassifierLB(DS,Z95per,LBType,gamma);
elseif RepType == 7
[acc,pruningpower] = OneNNClassifierLB(DS,Z90per,LBType,gamma);
elseif RepType == 8
[acc,pruningpower] = OneNNClassifierLB(DS,Z85per,LBType,gamma);
elseif RepType == 9
[acc,pruningpower] = OneNNClassifierLB(DS,Z80per,LBType,gamma);
end
end
ClassificationTime = toc;
% Evaluate SmplPoints in terms of clustering
% measures (e.g., SSE, RandIndex, NystromAppx)
ResultsTmp = [acc,pruningpower,ClassificationTime];
%
Results(i,:) = Results(i,:) + ResultsTmp;
end
Results(i,:) = Results(i,:) ./ 1;
end
dlmwrite( strcat( 'RunClassificationOneNN/','RESULTS_RunClassificationOneNN_', char(ClassMethods(ClassificationMethod)), '_', char(Methods(Method)), '_', char(Types(RepType)), '_', char(LBTypes(LBType)), '_', num2str(DataSetStartIndex), '_', num2str(DataSetEndIndex),'.results'), Results, 'delimiter', '\t');
end
end