-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathExperimentsParameters.txt
136 lines (116 loc) · 7.82 KB
/
ExperimentsParameters.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#############################################
#############################################
############### Source Codes ################
#############################################
#############################################
- Variance-Aware Quantization
Library used:
- Eigen by Gael Guennebaud, Benoit Jacob, and others. http://eigen.tuxfamily.org/
- Armadillo by Conrad Sanderson and Ryan Curtin. http://arma.sourceforge.net/
(1) Armadillo: a template-based C++ library for linear algebra.
Journal of Open Source Software, Vol. 1, pp. 26, 2016.
(2) A User-Friendly Hybrid Sparse Matrix Class in C++.
Lecture Notes in Computer Science (LNCS), Vol. 10931, pp. 422-430, 2018.
- GNU Linear Programming Kit (GLPK). https://www.gnu.org/software/glpk/
- LAPACK and the BLAS. http://www.netlib.org/lapack/ & http://www.netlib.org/blas/
Blackford, L.S. et al., 2002. An updated set of basic linear algebra subprograms (BLAS).
ACM Transactions on Mathematical Software, 28(2), pp.135–151.
- PQ Fast Scan code created by F. André, A.-M. Kermarrec, and N. Le Scouarnec.
from "Cache locality is not enough: High-Performance Nearest Neighbor Search with Product Quantization"
In 42nd International Conference on Very Large Data Bases, vol. 9, no. 4, p. 12. 2016.
URL: https://github.com/technicolor-research/pq-fast-scan
- LSH + ITQ, PQ, OPQ, and HNSW use Faiss library by Facebook AI Research.
from "Billion-scale similarity search with GPUs"
IEEE Transactions on Big Data (2019).
URL: https://github.com/facebookresearch/faiss
- Bolt code created by D Blalock.
from "Bolt: Accelerated Data Mining with Fast Vector Compression"
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 727-735. 2017.
URL: https://github.com/dblalock/bolt
- DS-Tree & iSAX2+ code created by Karima Echihabi.
from "Return of the Lernaean Hydra: Experimental Evaluation of Data Series Approximate Similarity Search"
arXiv preprint arXiv:2006.11459 (2020). (VLDB 2019)
URL: https://github.com/karimaechihabi/lernaean-hydra
#############################################
#############################################
########## Experimental Parameters ##########
#############################################
#############################################
=== 1M (Million) Datasets :: Experiments ===
Figure 5
- Comparison of VAQ against PQ, OPQ, and ITQ-LSH
SIFT (128 dimensions):
PQ - 256 bit budget, 32 segments, 8 bits per segment
OPQ - 256 bit budget, 32 segments, 8 bits per segment, 50 OPQ iterations
ITQ+LSH - 256 bit budget, 50 ITQ iterations
VAQ - 256 bit budget, 32 segments, min 2 & max 13 bits per segment, 1000 triangle inequality clusters, 16 segments TI centroids, visit 25% clusters
SEISMIC (256 dimensions):
PQ - 128 bit budget, 16 segments, 8 bits per segment
OPQ - 128 bit budget, 16 segments, 8 bits per segment, 50 OPQ iterations
ITQ+LSH - 256 bit budget, 50 ITQ iterations
VAQ - 128 bit budget, 16 segments, min 1 & max 12 bits per segment, 100 triangle inequality clusters, 8 segments TI centroids, visit 10% clusters
SALD (128 dimensions):
PQ - 256 bit budget, 32 segments, 8 bits per segment
OPQ - 256 bit budget, 32 segments, 8 bits per segment, 50 OPQ iterations
ITQ+LSH - 128 bit budget, 50 ITQ iterations
VAQ - 256 bit budget, 64 segments, min 1 & max 9 bits per segment, 1000 triangle inequality clusters, 32 segments TI centroids, visit 10% clusters
DEEP (96 dimensions)
PQ - 256 bit budget, 32 segments, 8 bits per segment
OPQ - 256 bit budget, 32 segments, 8 bits per segment, 50 OPQ iterations
ITQ+LSH - 96 bit budget, 50 ITQ iterations
VAQ - 256 bit budget, 32 segments, min 5 & max 12 bits per segment, 1000 triangle inequality clusters, 16 segments TI centroids, visit 25% clusters
ASTRO (256 dimensions)
PQ - 128 bit budget, 16 segments, 8 bits per segment
OPQ - 128 bit budget, 16 segments, 8 bits per segment, 50 OPQ iterations
ITQ+LSH - 256 bit budget, 50 ITQ iterations
VAQ - 128 bit budget, 16 segments, min 7 & max 9 bits per segment, 1000 triangle inequality clusters, 16 segments TI centroids, visit 10% clusters
Figure 6
- Evaluation of early abandoning (EA) and triangle inequality (TI) during query execution
Using VAQ 256 bit budget, 32 segments, min 7 & max 10 bits per segment, 16 segments TI centroids
Figure 7
- Comparison of VAQ against hardware-accelerated quantization methods, Bolt and PQFastScan
Bolt/PQFastScan use 256 bit budget, 64 segments
For VAQ:
SIFT - 256 bit budget, 64 segments, min 1 & max 8 bits per segment, 1000 triangle inequality clusters, 32 segments TI centroids, visit 2.5% clusters
SEISMIC - 256 bit budget, 32 segments, min 7 & max 13 bits per segment, 100 triangle inequality clusters, 16 segments TI centroids, visit 5% clusters
SALD - 256 bit budget, 64 segments, min 1 & max 9 bits per segment, 1000 triangle inequality clusters, 32 segments TI centroids, visit 2.5% clusters
DEEP - 256 bit budget, 32 segments, min 3 & max 7 bits per segment, 1000 triangle inequality clusters, 32 segments TI centroids, visit 2.5% clusters
ASTRO - 256 bit budget, 32 segments, min 4 & max 10 bits per segment, 2000 triangle inequality clusters, 32 segments TI centroids, visit 2.5% clusters
Figure 10
- Comparison of VAQ against graph-based methods for similarity search
SIFT
HNSW - 32 number of links, 20 ef-construction, 16 ef-search
VAQ - 256 bit budget, 64 segments, min 1 & max 8 bits per segment, 100 & 200 & 400 refinement
SEISMIC
HNSW - 32 number of links, 20 ef-construction, 16 ef-search
VAQ - 128 bit budget, 32 segments, min 2 & max 8 bits per segment, 100 & 200 & 400 refinement
SALD
HNSW - 32 number of links, 20 ef-construction, 16 ef-search
VAQ - 256 bit budget, 64 segments, min 1 & max 8 bits per segment, 100 & 200 & 400 refinement
DEEP
HNSW - 32 number of links, 20 ef-construction, 16 ef-search
VAQ - 256 bit budget, 64 segments, min 3 & max 7 bits per segment, 100 & 200 & 400 refinement
SIFT
HNSW - 32 number of links, 20 ef-construction, 16 ef-search
VAQ - 256 bit budget, 64 segments, min 1 & max 6 bits per segment, 100 & 200 & 400 refinement
=== 100M (Million) Datasets :: Experiments ===
Figure 11.a
- Evaluation on DEEP dataset
OPQ - 256 bit budget, 32 segments, 8 bits per segment, 50 OPQ iterations, from 100 to 1000 refinement
OPQ + IMI2x1 - 256 bit budget, 32 segments, 8 bits per segment, 50 OPQ iterations, from 100 to 2000 refinement
OPQ + IMI2x2 - 256 bit budget, 32 segments, 8 bits per segment, 50 OPQ iterations, from 100 to 1000 refinement
iSAX2+ NG - 100.000 leaf size, from 100 to 4000 nprobes
iSAX2+ Epsilon - 100.000 leaf size, from 100 to 20 epsilon value
DS-Tree NG - 100.000 leaf size, from 50 to 1000 nprobes
DS-Tree Epsilon - 100.000 leaf size, from 100 to 20 epsilon value
VAQ - 256 bit budget, 32 segments, min 5 & max 12 bits per segment, 1000 triangle inequality clusters, 16 segments TI centroids, visit (25, 10, and 5)% clusters, from 100 to 500 refinement
Figure 11.b
- Evaluation on SALD dataset
OPQ - 256 bit budget, 32 segments, 8 bits per segment, 50 OPQ iterations, from 100 to 600 refinement
OPQ + IMI2x1 - 256 bit budget, 32 segments, 8 bits per segment, 50 OPQ iterations, from 100 to 4000 refinement
OPQ + IMI2x2 - 256 bit budget, 32 segments, 8 bits per segment, 50 OPQ iterations, from 100 to 1000 refinement
iSAX2+ NG - 100.000 leaf size, from 1 to 100 nprobes
iSAX2+ Epsilon - 100.000 leaf size, from 2000 to 10 epsilon value
DS-Tree NG - 100.000 leaf size, from 1 to 100 nprobes
DS-Tree Epsilon - 100.000 leaf size, from 2000 to 10 epsilon value
VAQ - 256 bit budget, 32 segments, min 4 & max 15 bits per segment, 1000 triangle inequality clusters, 16 segments TI centroids, visit (25, 10, and 5)% clusters, from 100 to 600 refinement