Skip to content

Latest commit

 

History

History
346 lines (281 loc) · 12.9 KB

README.md

File metadata and controls

346 lines (281 loc) · 12.9 KB

The Enterprise-Grade Production-Ready RAG Framework

Python Version

🐦 Twitter   •   📢 Discord   •   Swarms Platform   •   📙 Documentation

GitHub issues GitHub forks GitHub stars GitHub licenseGitHub star chartDependency Status Downloads

Join the Agora discordShare on Twitter Share on Facebook Share on LinkedIn

Share on Reddit Share on Hacker News Share on Pinterest Share on WhatsApp

Here's a more detailed and larger table with descriptions and website links for each RAG system:

RAG System Status Description Documentation Website
ChromaDB Available A high-performance, distributed database optimized for handling large-scale AI tasks. ChromaDB Documentation ChromaDB
Pinecone Available A fully managed vector database that makes it easy to add vector search to your applications. Pinecone Documentation Pinecone
Redis Coming Soon An open-source, in-memory data structure store, used as a database, cache, and message broker. Redis Documentation Redis
Faiss Available A library for efficient similarity search and clustering of dense vectors, developed by Facebook AI. Faiss Documentation Faiss
SingleStore Available A distributed SQL database that provides high-performance vector similarity search. SingleStore Documentation SingleStore
HNSW Coming Soon A graph-based algorithm for approximate nearest neighbor search. HNSW Documentation HNSW

This table includes a brief description of each system, their current status, links to their documentation, and their respective websites for further information.

Requirements:

  • python 3.10
  • .env with your respective keys like PINECONE_API_KEY can be found in the .env.examples

Install

$ pip install swarms-memory

Usage

Pinecone

from typing import List, Dict, Any
from swarms_memory import PineconeMemory


# Example usage
if __name__ == "__main__":
    from transformers import AutoTokenizer, AutoModel
    import torch

    # Custom embedding function using a HuggingFace model
    def custom_embedding_function(text: str) -> List[float]:
        tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
        model = AutoModel.from_pretrained("bert-base-uncased")
        inputs = tokenizer(
            text,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=512,
        )
        with torch.no_grad():
            outputs = model(**inputs)
        embeddings = (
            outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
        )
        return embeddings

    # Custom preprocessing function
    def custom_preprocess(text: str) -> str:
        return text.lower().strip()

    # Custom postprocessing function
    def custom_postprocess(
        results: List[Dict[str, Any]],
    ) -> List[Dict[str, Any]]:
        for result in results:
            result["custom_score"] = (
                result["score"] * 2
            )  # Example modification
        return results

    # Initialize the wrapper with custom functions
    wrapper = PineconeMemory(
        api_key="your-api-key",
        environment="your-environment",
        index_name="your-index-name",
        embedding_function=custom_embedding_function,
        preprocess_function=custom_preprocess,
        postprocess_function=custom_postprocess,
        logger_config={
            "handlers": [
                {
                    "sink": "custom_rag_wrapper.log",
                    "rotation": "1 GB",
                },
                {
                    "sink": lambda msg: print(
                        f"Custom log: {msg}", end=""
                    )
                },
            ],
        },
    )

    # Adding documents
    wrapper.add(
        "This is a sample document about artificial intelligence.",
        {"category": "AI"},
    )
    wrapper.add(
        "Python is a popular programming language for data science.",
        {"category": "Programming"},
    )

    # Querying
    results = wrapper.query("What is AI?", filter={"category": "AI"})
    for result in results:
        print(
            f"Score: {result['score']}, Custom Score: {result['custom_score']}, Text: {result['metadata']['text']}"
        )

ChromaDB

from swarms_memory import ChromaDB

chromadb = ChromaDB(
    metric="cosine",
    output_dir="results",
    limit_tokens=1000,
    n_results=2,
    docs_folder="path/to/docs",
    verbose=True,
)

# Add a document
doc_id = chromadb.add("This is a test document.")

# Query the document
result = chromadb.query("This is a test query.")

# Traverse a directory
chromadb.traverse_directory()

# Display the result
print(result)

Faiss

from typing import List, Dict, Any
from swarms_memory.faiss_wrapper import FAISSDB


from transformers import AutoTokenizer, AutoModel
import torch


# Custom embedding function using a HuggingFace model
def custom_embedding_function(text: str) -> List[float]:
    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    model = AutoModel.from_pretrained("bert-base-uncased")
    inputs = tokenizer(
        text,
        return_tensors="pt",
        padding=True,
        truncation=True,
        max_length=512,
    )
    with torch.no_grad():
        outputs = model(**inputs)
    embeddings = (
        outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
    )
    return embeddings


# Custom preprocessing function
def custom_preprocess(text: str) -> str:
    return text.lower().strip()


# Custom postprocessing function
def custom_postprocess(
    results: List[Dict[str, Any]],
) -> List[Dict[str, Any]]:
    for result in results:
        result["custom_score"] = (
            result["score"] * 2
        )  # Example modification
    return results


# Initialize the wrapper with custom functions
wrapper = FAISSDB(
    dimension=768,
    index_type="Flat",
    embedding_function=custom_embedding_function,
    preprocess_function=custom_preprocess,
    postprocess_function=custom_postprocess,
    metric="cosine",
    logger_config={
        "handlers": [
            {
                "sink": "custom_faiss_rag_wrapper.log",
                "rotation": "1 GB",
            },
            {"sink": lambda msg: print(f"Custom log: {msg}", end="")},
        ],
    },
)

# Adding documents
wrapper.add(
    "This is a sample document about artificial intelligence.",
    {"category": "AI"},
)
wrapper.add(
    "Python is a popular programming language for data science.",
    {"category": "Programming"},
)

# Querying
results = wrapper.query("What is AI?")
for result in results:
    print(
        f"Score: {result['score']}, Custom Score: {result['custom_score']}, Text: {result['metadata']['text']}"
    )

SingleStore

from swarms_memory.vector_dbs.singlestore_wrapper import SingleStoreDB

# Initialize SingleStore with environment variables
db = SingleStoreDB(
    host="your_host",
    port=3306,
    user="your_user",
    password="your_password",
    database="your_database",
    table_name="example_vectors",
    dimension=768,  # Default dimension for all-MiniLM-L6-v2
    namespace="example"
)

# Custom embedding function example (optional)
def custom_embedding_function(text: str) -> List[float]:
    # Your custom embedding logic here
    return embeddings

# Initialize with custom functions
db = SingleStoreDB(
    host="your_host",
    port=3306,
    user="your_user",
    password="your_password",
    database="your_database",
    table_name="example_vectors",
    dimension=768,
    namespace="example",
    embedding_function=custom_embedding_function,
    preprocess_function=lambda x: x.lower(),  # Simple preprocessing
    postprocess_function=lambda x: sorted(x, key=lambda k: k['similarity'], reverse=True)  # Sort by similarity
)

# Add documents with metadata
doc_id = db.add(
    document="SingleStore is a distributed SQL database that combines horizontal scalability with ACID guarantees.",
    metadata={"source": "docs", "category": "database"}
)

# Query similar documents
results = db.query(
    query="How does SingleStore scale?",
    top_k=3,
    metadata_filter={"source": "docs"}
)

# Process results
for result in results:
    print(f"Document: {result['document']}")
    print(f"Similarity: {result['similarity']:.4f}")
    print(f"Metadata: {result['metadata']}\n")

# Delete a document
db.delete(doc_id)

# Key features:
# - Built on SingleStore's native vector similarity search
# - Supports custom embedding models and functions
# - Automatic table creation with optimized vector indexing
# - Metadata filtering for refined searches
# - Document preprocessing and postprocessing
# - Namespace support for document organization
# - SSL support for secure connections

# For more examples, see the [SingleStore example](examples/singlestore_wrapper_example.py).

License

MIT

Citation

Please cite Swarms in your paper or your project if you found it beneficial in any way! Appreciate you.

@misc{swarms,
  author = {Gomez, Kye},
  title = {{Swarms: The Multi-Agent Collaboration Framework}},
  howpublished = {\url{https://github.com/kyegomez/swarms}},
  year = {2023},
  note = {Accessed: Date}
}