From d1c282dbb8a305fcd82643ffe6a05633711dcf55 Mon Sep 17 00:00:00 2001 From: Kye Date: Fri, 9 Feb 2024 17:46:27 -0800 Subject: [PATCH] [FEATS][ InputOpenAISpec, OutputOpenAISpec, OpenAIAPIWrapper,] --- requirements.txt | 7 +- servers/blip2.py | 141 ++++++++++ servers/fuyu_api.py | 107 ++++++++ servers/qwen_tensort.py | 524 ++++++++++++++++++++++++++++++++++++ swarms_cloud/__init__.py | 9 + swarms_cloud/openai_spec.py | 134 +++++++++ 6 files changed, 921 insertions(+), 1 deletion(-) create mode 100644 servers/blip2.py create mode 100644 servers/fuyu_api.py create mode 100644 servers/qwen_tensort.py create mode 100644 swarms_cloud/openai_spec.py diff --git a/requirements.txt b/requirements.txt index 5dd75e0..e871871 100644 --- a/requirements.txt +++ b/requirements.txt @@ -3,4 +3,9 @@ skypilot fastapi supabase pytest -pytest-benchmark \ No newline at end of file +pytest-benchmark +tensorrt +torch +einops +tiktoken +uvicorn \ No newline at end of file diff --git a/servers/blip2.py b/servers/blip2.py new file mode 100644 index 0000000..b5115b6 --- /dev/null +++ b/servers/blip2.py @@ -0,0 +1,141 @@ +import argparse +import os + +import torch +import tensorrt as trt + +# isort: on +import tensorrt_llm + + +def get_engine_name(rank): + return "rank{}.engine".format(rank) + + +def trt_dtype_to_torch(dtype): + if dtype == trt.float16: + return torch.float16 + elif dtype == trt.float32: + return torch.float32 + elif dtype == trt.int32: + return torch.int32 + else: + raise TypeError("%s is not supported" % dtype) + + +def TRTOPT(args, config): + dtype = config["pretrained_config"]["dtype"] + world_size = config["pretrained_config"]["mapping"]["world_size"] + assert ( + world_size == tensorrt_llm.mpi_world_size() + ), f"Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})" + + use_gpt_attention_plugin = bool( + config["build_config"]["plugin_config"]["gpt_attention_plugin"] + ) + + num_heads = config["pretrained_config"]["num_attention_heads"] // world_size + hidden_size = config["pretrained_config"]["hidden_size"] // world_size + vocab_size = config["pretrained_config"]["vocab_size"] + max_batch_size = config["build_config"]["max_batch_size"] + num_layers = config["pretrained_config"]["num_hidden_layers"] + remove_input_padding = config["build_config"]["plugin_config"][ + "remove_input_padding" + ] + max_prompt_embedding_table_size = config["build_config"].get( + "max_prompt_embedding_table_size", 0 + ) + + model_config = tensorrt_llm.runtime.ModelConfig( + max_batch_size=max_batch_size, + vocab_size=vocab_size, + num_layers=num_layers, + num_heads=num_heads, + num_kv_heads=num_heads, + hidden_size=hidden_size, + gpt_attention_plugin=use_gpt_attention_plugin, + remove_input_padding=remove_input_padding, + max_prompt_embedding_table_size=max_prompt_embedding_table_size, + dtype=dtype, + ) + + runtime_rank = tensorrt_llm.mpi_rank() + runtime_mapping = tensorrt_llm.Mapping(world_size, runtime_rank) + torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node) + + engine_name = get_engine_name(runtime_rank) + serialize_path = os.path.join(args.opt_engine_dir, engine_name) + + tensorrt_llm.logger.set_level(args.log_level) + + with open(serialize_path, "rb") as f: + engine_buffer = f.read() + decoder = tensorrt_llm.runtime.GenerationSession( + model_config, engine_buffer, runtime_mapping + ) + + max_input_len = config["build_config"]["max_input_len"] + return decoder, model_config, world_size, dtype, max_input_len + + +def ptuning_setup( + prompt_table, + dtype, + hidden_size, + tasks, + input_ids, + input_lengths, + remove_input_padding, +): + if prompt_table is not None: + task_vocab_size = torch.tensor( + [prompt_table.shape[1]], dtype=torch.int32, device="cuda" + ) + prompt_table = prompt_table.view( + (prompt_table.shape[0] * prompt_table.shape[1], prompt_table.shape[2]) + ) + prompt_table = prompt_table.cuda().to( + dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype) + ) + else: + prompt_table = torch.empty([1, hidden_size]).cuda() + task_vocab_size = torch.zeros([1]).cuda() + + num_sequences = input_lengths.size(0) if remove_input_padding else input_ids.size(0) + + if tasks is not None: + tasks = torch.tensor( + [int(t) for t in tasks.split(",")], dtype=torch.int32, device="cuda" + ) + assert ( + tasks.shape[0] == num_sequences + ), "Number of supplied tasks must match input batch size" + else: + tasks = torch.zeros([num_sequences], dtype=torch.int32).cuda() + + return [prompt_table, tasks, task_vocab_size] + + +def parse_arguments(): + parser = argparse.ArgumentParser() + parser.add_argument("--max_output_len", type=int, default=30) + parser.add_argument("--log_level", type=str, default="info") + parser.add_argument("--engine_dir", type=str, default="./plan") + parser.add_argument("--input_dir", type=str, default="image.pt") + parser.add_argument("--query_tokens", type=str, default="query_tokens.pt") + parser.add_argument( + "--opt_engine_dir", type=str, default="trt_engine/blip-2-opt-2.7b/fp16/1-gpu/" + ) + parser.add_argument("--hf_model_location", type=str, default="facebook/opt-2.7b") + parser.add_argument( + "--input_text", type=str, default="Question: which city is this? Answer:" + ) + parser.add_argument( + "--num_beams", type=int, help="Use beam search if num_beams >1", default=1 + ) + parser.add_argument( + "--max_txt_len", type=int, help="Max text prompt length", default=32 + ) + parser.add_argument("--top_k", type=int, default=1) + + return parser.parse_args() diff --git a/servers/fuyu_api.py b/servers/fuyu_api.py new file mode 100644 index 0000000..af846bb --- /dev/null +++ b/servers/fuyu_api.py @@ -0,0 +1,107 @@ +import argparse +import asyncio +import json +from typing import AsyncGenerator + +import uvicorn +from executor import GenerationExecutor +from fastapi import FastAPI, Request +from fastapi.responses import JSONResponse, Response, StreamingResponse +from swarms import Fuyu, Conversation + +TIMEOUT_KEEP_ALIVE = 5 # seconds. +TIMEOUT_TO_PREVENT_DEADLOCK = 1 # seconds. +app = FastAPI() +executor: GenerationExecutor | None = None + + +@app.get("/stats") +async def stats() -> Response: + assert executor is not None + return JSONResponse(json.loads(await executor.aget_stats())) + + +@app.get("/health") +async def health() -> Response: + """Health check.""" + return Response(status_code=200) + + +@app.post("/generate") +async def generate(request: Request) -> Response: + assert executor is not None + """Generate completion for the request. + + The request should be a JSON object with the following fields: + - prompt: the prompt to use for the generation. + - stream: whether to stream the results or not. + - other fields: the sampling parameters (See `SamplingParams` for details). + """ + request_dict = await request.json() + + streaming = request_dict.pop("streaming", False) + + model_name = request.query_params.get("model_name") + max_new_tokens = request.query_params.get("max_new_tokens") + + model = Fuyu( + model_name=model_name, + max_new_tokens=max_new_tokens, + args=args # Injecting args into the Fuyu model + ) + response = model.run( + request_dict.pop("prompt"), + request_dict.pop("max_num_tokens", 8), + streaming + ) + + async def stream_results() -> AsyncGenerator[bytes, None]: + async for output in response: + yield (json.dumps({"text": output.text}) + "\n").encode("utf-8") + + if streaming: + return StreamingResponse(stream_results(), media_type="text/plain") + + # Non-streaming case + await response.await_completion() + + # Return model configurations as JSON + model_config = { + "model_name": model.model_name, + "max_new_tokens": model.max_new_tokens, + "args": { + "model_dir": args.model_dir, + "tokenizer_type": args.tokenizer_type, + "max_beam_width": args.max_beam_width + } + } + + return JSONResponse({"model_config": model_config, "choices": [{"text": response.text}]}) + + +async def main(args): + global executor + + executor = GenerationExecutor( + args.model_dir, args.tokenizer_type, args.max_beam_width + ) + config = uvicorn.Config( + app, + host=args.host, + port=args.port, + log_level="info", + timeout_keep_alive=TIMEOUT_KEEP_ALIVE, + ) + await uvicorn.Server(config).serve() + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("model_dir") + parser.add_argument("tokenizer_type") + parser.add_argument("--host", type=str, default=None) + parser.add_argument("--port", type=int, default=8000) + parser.add_argument("--max_beam_width", type=int, default=1) + args = parser.parse_args() + + asyncio.run(main(args)) diff --git a/servers/qwen_tensort.py b/servers/qwen_tensort.py new file mode 100644 index 0000000..3325b79 --- /dev/null +++ b/servers/qwen_tensort.py @@ -0,0 +1,524 @@ +# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# SPDX-License-Identifier: Apache-2.0 +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import argparse +import json +import os +from typing import List, Tuple + +import tensorrt as trt +import torch +from transformers import AutoConfig, AutoTokenizer + +import tensorrt_llm +import tensorrt_llm.profiler as profiler +from tensorrt_llm import logger +from tensorrt_llm.quantization import QuantMode +from tensorrt_llm.runtime import ModelConfig, SamplingConfig, Session, TensorInfo + + +def get_engine_name(model, dtype, tp_size, pp_size, rank): + if pp_size == 1: + return "{}_{}_tp{}_rank{}.engine".format(model, dtype, tp_size, rank) + return "{}_{}_tp{}_pp{}_rank{}.engine".format(model, dtype, tp_size, pp_size, rank) + + +def trt_dtype_to_torch(dtype): + if dtype == trt.float16: + return torch.float16 + elif dtype == trt.float32: + return torch.float32 + elif dtype == trt.int32: + return torch.int32 + else: + raise TypeError("%s is not supported" % dtype) + + +class QWenInfer(object): + def __init__( + self, + tokenizer_dir, + qwen_engine_dir, + log_level, + output_csv, + output_npy, + num_beams, + ): + self.tokenizer_dir = tokenizer_dir + self.qwen_engine_dir = qwen_engine_dir + self.log_level = log_level + self.global_max_input_len = 2048 + self.decoder = None + self.tokenizer = None + self.config = None + self.sampling_config = None + self.output_csv = output_csv + self.output_npy = output_npy + self.num_beams = num_beams + self.model_config = None + + def get_model(self): + # --load the tokenizer and engine # + tokenizer = AutoTokenizer.from_pretrained( + self.tokenizer_dir, + legacy=False, + trust_remote_code=True, + ) + config_path = os.path.join(self.qwen_engine_dir, "config.json") + with open(config_path, "r") as f: + config = json.load(f) + gen_config_path = os.path.join(self.tokenizer_dir, "generation_config.json") + with open(gen_config_path, "r") as f: + gen_config = json.load(f) + top_k = gen_config["top_k"] + top_p = gen_config["top_p"] + chat_format = gen_config["chat_format"] + if chat_format == "raw": + eos_token_id = gen_config["eos_token_id"] + pad_token_id = gen_config["pad_token_id"] + elif chat_format == "chatml": + pad_token_id = eos_token_id = tokenizer.im_end_id + else: + raise Exception("unknown chat format ", chat_format) + + use_gpt_attention_plugin = config["plugin_config"]["gpt_attention_plugin"] + remove_input_padding = config["plugin_config"]["remove_input_padding"] + dtype = config["builder_config"]["precision"] + tp_size = config["builder_config"]["tensor_parallel"] + pp_size = config["builder_config"]["pipeline_parallel"] + world_size = tp_size * pp_size + assert ( + world_size == tensorrt_llm.mpi_world_size() + ), f"Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})" + num_heads = config["builder_config"]["num_heads"] // world_size + max_batch_size = config["builder_config"]["max_batch_size"] + hidden_size = config["builder_config"]["hidden_size"] // world_size + vocab_size = config["builder_config"]["vocab_size"] + num_layers = config["builder_config"]["num_layers"] + num_kv_heads = config["builder_config"].get("num_kv_heads", num_heads) + paged_kv_cache = config["plugin_config"]["paged_kv_cache"] + tokens_per_block = config["plugin_config"]["tokens_per_block"] + max_prompt_embedding_table_size = config["builder_config"].get( + "max_prompt_embedding_table_size", 0 + ) + quant_mode = QuantMode(config["builder_config"]["quant_mode"]) + if config["builder_config"].get("multi_query_mode", False): + tensorrt_llm.logger.warning( + "`multi_query_mode` config is deprecated. Please rebuild the engine." + ) + num_kv_heads = 1 + # num_kv_heads = (num_kv_heads + tp_size - 1) // tp_size + use_custom_all_reduce = config["plugin_config"].get( + "use_custom_all_reduce", False + ) + + runtime_rank = tensorrt_llm.mpi_rank() + runtime_mapping = tensorrt_llm.Mapping( + world_size=world_size, rank=runtime_rank, tp_size=tp_size, pp_size=pp_size + ) + torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node) + + model_config = ModelConfig( + max_batch_size=max_batch_size, + num_heads=num_heads, + num_kv_heads=num_kv_heads, + hidden_size=hidden_size, + vocab_size=vocab_size, + num_layers=num_layers, + gpt_attention_plugin=use_gpt_attention_plugin, + paged_kv_cache=paged_kv_cache, + tokens_per_block=tokens_per_block, + remove_input_padding=remove_input_padding, + dtype=dtype, + quant_mode=quant_mode, + use_custom_all_reduce=use_custom_all_reduce, + max_prompt_embedding_table_size=max_prompt_embedding_table_size, + ) + sampling_config = SamplingConfig( + end_id=eos_token_id, + pad_id=pad_token_id, + num_beams=self.num_beams, + top_k=top_k, + top_p=top_p, + temperature=1.0, + ) + + engine_name = get_engine_name("qwen", dtype, tp_size, pp_size, runtime_rank) + serialize_path = os.path.join(self.qwen_engine_dir, engine_name) + print(f"Loading engine from {serialize_path}") + return ( + model_config, + sampling_config, + runtime_mapping, + runtime_rank, + serialize_path, + tokenizer, + eos_token_id, + pad_token_id, + ) + + def qwen_model_init(self): + ( + model_config, + sampling_config, + runtime_mapping, + runtime_rank, + serialize_path, + tokenizer, + eos_token_id, + pad_token_id, + ) = self.get_model() + with open(serialize_path, "rb") as f: + engine_buffer = f.read() + self.decoder = tensorrt_llm.runtime.GenerationSession( + model_config, + engine_buffer, + runtime_mapping, + ) + self.tokenizer = tokenizer + self.sampling_config = sampling_config + self.model_config = model_config + self.config, _ = AutoConfig.from_pretrained( + self.tokenizer_dir, + return_unused_kwargs=True, + trust_remote_code=True, + ) + + def ptuning_setup(self, prompt_table, dtype, hidden_size, tasks, input_ids): + if prompt_table is not None: + task_vocab_size = torch.tensor( + [prompt_table.shape[1]], dtype=torch.int32, device="cuda" + ) + prompt_table = prompt_table.view( + (prompt_table.shape[0] * prompt_table.shape[1], prompt_table.shape[2]) + ) + prompt_table = prompt_table.cuda().to( + dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype) + ) + else: + prompt_table = torch.empty([1, hidden_size]).cuda() + task_vocab_size = torch.zeros([1]).cuda() + + if tasks is not None: + tasks = torch.tensor( + [int(t) for t in tasks.split(",")], dtype=torch.int32, device="cuda" + ) + assert ( + tasks.shape[0] == input_ids.shape[0] + ), "Number of supplied tasks must match input batch size" + else: + tasks = torch.zeros([input_ids.size(0)], dtype=torch.int32).cuda() + + return [prompt_table, tasks, task_vocab_size] + + def make_context( + self, + query: str, + history: List[Tuple[str, str]] = None, + system: str = "You are a helpful assistant.", + max_window_size: int = 6144, + ): + if history is None: + history = [] + + im_start, im_end = "<|im_start|>", "<|im_end|>" + im_start_tokens = [self.tokenizer.im_start_id] # 151644 + im_end_tokens = [self.tokenizer.im_end_id] # [151645] + nl_tokens = self.tokenizer.encode("\n") + + def _tokenize_str(role, content): + return f"{role}\n{content}", self.tokenizer.encode( + role, allowed_special=set(self.tokenizer.IMAGE_ST) + ) + nl_tokens + self.tokenizer.encode( + content, allowed_special=set(self.tokenizer.IMAGE_ST) + ) + + system_text, system_tokens_part = _tokenize_str("system", system) + system_tokens = im_start_tokens + system_tokens_part + im_end_tokens + + raw_text = "" + context_tokens = [] + + for turn_query, turn_response in reversed(history): + query_text, query_tokens_part = _tokenize_str("user", turn_query) + query_tokens = im_start_tokens + query_tokens_part + im_end_tokens + if turn_response is not None: + response_text, response_tokens_part = _tokenize_str( + "assistant", turn_response + ) + response_tokens = im_start_tokens + response_tokens_part + im_end_tokens + + next_context_tokens = ( + nl_tokens + query_tokens + nl_tokens + response_tokens + ) + prev_chat = f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}" + else: + next_context_tokens = nl_tokens + query_tokens + nl_tokens + prev_chat = f"\n{im_start}{query_text}{im_end}\n" + + current_context_size = ( + len(system_tokens) + len(next_context_tokens) + len(context_tokens) + ) + if current_context_size < max_window_size: + context_tokens = next_context_tokens + context_tokens + raw_text = prev_chat + raw_text + else: + break + + context_tokens = system_tokens + context_tokens + raw_text = f"{im_start}{system_text}{im_end}" + raw_text + context_tokens += ( + nl_tokens + + im_start_tokens + + _tokenize_str("user", query)[1] + + im_end_tokens + + nl_tokens + + im_start_tokens + + self.tokenizer.encode("assistant") + + nl_tokens + ) + raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n" + + return raw_text, context_tokens + + def generate_for_qwenvl( + self, + input_tokens, + max_new_tokens: int, + prompt_table=None, + tasks=None, + task_vocab_size=None, + ): + input_ids = None + input_lengths = None + input_ids = torch.as_tensor(input_tokens, device="cuda", dtype=torch.int32) + input_lengths = torch.tensor( + [input_ids.size(1)], device="cuda", dtype=torch.int32 + ) + max_input_length = torch.max(input_lengths).item() + max_new_tokens = min( + max_new_tokens, self.global_max_input_len - max_input_length + ) + self.decoder.setup( + batch_size=input_lengths.size(0), + max_context_length=max_input_length, + max_new_tokens=max_new_tokens, + ) + profiler.start("QWen") + run_time = 1 + for _ in range(run_time): + output_ids = self.decoder.decode( + input_ids, + input_lengths, + self.sampling_config, + prompt_table, + tasks, + task_vocab_size, + ) + torch.cuda.synchronize() + profiler.stop("QWen") + Qwen_time = profiler.elapsed_time_in_sec("QWen") / run_time + + return output_ids, Qwen_time + + def qwen_infer( + self, input_vit, images_path, input_text, max_new_tokens, history=None + ): + if images_path is None: + content_list = [] + else: + content_list = images_path + if history is None: + history = [] + content_list.append({"text": input_text}) + query = self.tokenizer.from_list_format(content_list) + raw_text, context_tokens = self.make_context(query, history=history) + # context_tokens = self.tokenizer.encode(query) + input_ids = torch.tensor([context_tokens]).to("cuda") + bos_pos = torch.where(input_ids == self.config.visual["image_start_id"]) + eos_pos = torch.where(input_ids == self.config.visual["image_start_id"] + 1) + assert (bos_pos[0] == eos_pos[0]).all() + img_pos = torch.stack((bos_pos[0], bos_pos[1], eos_pos[1]), dim=1) + vocab_size = self.config.vocab_size + fake_prompt_id = torch.arange( + vocab_size, + vocab_size + input_vit.shape[0] * input_vit.shape[1], + device="cuda", + ) + fake_prompt_id = fake_prompt_id.reshape(input_vit.shape[0], input_vit.shape[1]) + for idx, (i, a, b) in enumerate(img_pos): + input_ids[i][a + 1 : b] = fake_prompt_id[idx] + input_ids = input_ids.contiguous().to(torch.int32).cuda() + input_lengths = torch.tensor(input_ids.size(1), dtype=torch.int32).cuda() + dtype = self.model_config.dtype + prompt_table, tasks, task_vocab_size = self.ptuning_setup( + input_vit, dtype, self.config.hidden_size, None, input_ids + ) + + output_ids, Qwen_time = self.generate_for_qwenvl( + input_ids, max_new_tokens, prompt_table, tasks, task_vocab_size + ) + + runtime_rank = tensorrt_llm.mpi_rank() + input_lengths = torch.tensor( + [input_ids.size(1)], device="cuda", dtype=torch.int32 + ) + effective_output_token = 0 + if runtime_rank == 0: + if self.output_csv is None and self.output_npy is None: + for b in range(input_lengths.size(0)): + inputs = input_ids[b] + if content_list is not None: + print(f'Input: "{content_list}"') + print("\n") + if self.num_beams <= 1: + outputs = output_ids[b][0, len(inputs) :].tolist() + try: + effective_output_token = ( + effective_output_token + outputs.index(151643) + ) + except: + effective_output_token = 1 + output_text = self.tokenizer.decode( + outputs, skip_special_tokens=True + ) + print(f'Output: "{output_text}"') + print("\n") + else: + for beam in range(self.num_beams): + outputs = output_ids[b][beam, len(inputs) :].tolist() + output_text = self.tokenizer.decode( + outputs, skip_special_tokens=True + ) + print(f'Output(beam: {beam}): "{output_text}"') + + logger.info(f"TensorRT-LLM QWen time: {Qwen_time} sec ") + history.append((query, output_text)) + return output_text + + +def parse_arguments(): + parser = argparse.ArgumentParser() + parser.add_argument("--max_new_tokens", type=int, default=200) + parser.add_argument("--log_level", type=str, default="info") + parser.add_argument( + "--vit_engine_dir", + type=str, + default="qwen_outputs", + ) + parser.add_argument( + "--qwen_engine_dir", + type=str, + default="qwen_outputs", + ) + parser.add_argument( + "--tokenizer_dir", + type=str, + default=".", + help="Directory containing the tokenizer.model.", + ) + parser.add_argument("--input_text", type=str, default="Describe the picture") + parser.add_argument( + "--images_path", type=list, default=[{"image": "./pics/demo.jpeg"}] + ) + parser.add_argument("--input_dir", type=list, default=[{"image": "image.pt"}]) + + parser.add_argument( + "--input_tokens", + dest="input_file", + type=str, + help="CSV or Numpy file containing tokenized input. Alternative to text input.", + default=None, + ) + parser.add_argument( + "--output_csv", + type=str, + help="CSV file where the tokenized output is stored.", + default=None, + ) + parser.add_argument( + "--output_npy", + type=str, + help="Numpy file where the tokenized output is stored.", + default=None, + ) + parser.add_argument( + "--num_beams", type=int, help="Use beam search if num_beams >1", default=1 + ) + parser.add_argument("--display", default=False, action="store_true") + parser.add_argument("--port", type=str, default="8006") + parser.add_argument("--local_machine", default=False, action="store_true") + return parser.parse_args() + + +def vit_process(image_path, engine_dir, stream): + vit_path = os.path.join(engine_dir, "visual_encoder/visual_encoder_fp16.plan") + logger.info(f"Loading engine from {vit_path}") + with open(vit_path, "rb") as f: + engine_buffer = f.read() + logger.info(f"Creating session from engine {vit_path}") + session_vit = Session.from_serialized_engine(engine_buffer) + device = torch.device("cuda") if torch.cuda.is_available() else "cpu" + images_list = [] + for img in image_path: + for v in img.values(): + image = torch.load(v) + if image.device.type == "cpu": + image = image.to(device) + images_list.append(image) + images = torch.cat(images_list) + batch_size = images.size(0) + images = images.expand(batch_size, -1, -1, -1).contiguous() + visual_inputs = {"input": images.float()} + visual_output_info = session_vit.infer_shapes( + [TensorInfo("input", trt.DataType.FLOAT, images.shape)] + ) + visual_outputs = { + t.name: torch.empty( + tuple(t.shape), dtype=trt_dtype_to_torch(t.dtype), device="cuda" + ) + for t in visual_output_info + } + profiler.start("ViT") + + run_time = 1 + for _ in range(run_time): + ok = session_vit.run(visual_inputs, visual_outputs, stream) + profiler.stop("ViT") + Vit_time = profiler.elapsed_time_in_sec("ViT") / run_time + logger.info(f"TensorRT-LLM ViT latency: {Vit_time} sec ") + + assert ok, "Runtime execution failed for vit session" + + image_embeds = visual_outputs["output"] + return image_embeds + + +if __name__ == "__main__": + args = parse_arguments() + stream = torch.cuda.current_stream().cuda_stream + tensorrt_llm.logger.set_level(args.log_level) + image_embeds = vit_process(args.input_dir, args.vit_engine_dir, stream) + qinfer = QWenInfer( + args.tokenizer_dir, + args.qwen_engine_dir, + args.log_level, + args.output_csv, + args.output_npy, + args.num_beams, + ) + qinfer.qwen_model_init() + qinfer.qwen_infer( + image_embeds, args.images_path, args.input_text, args.max_new_tokens, history=[] + ) diff --git a/swarms_cloud/__init__.py b/swarms_cloud/__init__.py index 2945cd6..438b434 100644 --- a/swarms_cloud/__init__.py +++ b/swarms_cloud/__init__.py @@ -38,6 +38,12 @@ check_request, ) +from swarms_cloud.openai_spec import ( + InputOpenAISpec, + OutputOpenAISpec, + OpenAIAPIWrapper, +) + __all__ = [ "generate_api_key", @@ -75,4 +81,7 @@ "get_model_list", "create_error_response", "check_request", + "InputOpenAISpec", + "OutputOpenAISpec", + "OpenAIAPIWrapper", ] diff --git a/swarms_cloud/openai_spec.py b/swarms_cloud/openai_spec.py new file mode 100644 index 0000000..c2eec6b --- /dev/null +++ b/swarms_cloud/openai_spec.py @@ -0,0 +1,134 @@ +from typing import List, Dict, Any +import uuid +from pydantic import BaseModel +from typing import Optional +import time + +# ID +id = str(uuid.uuid4()) + + +class InputOpenAISpec(BaseModel): + """OpenAI Spec for the model""" + + model: Optional[str] = "gpt-3.5-turbo" + max_new_tokens: Optional[int] = 100 + prompt: Optional[str] = "" + stream: Optional[bool] = False + sampling_params: Optional[Dict[str, Any]] = None + best_of: Optional[int] = 1 + echo: Optional[bool] = False + frequency_penalty: Optional[float] = 0.0 + logit_bias: Optional[Dict[str, Any]] = None + logprobs: Optional[int] = None + max_tokens: Optional[int] = None + n: Optional[int] = 1 + presence_penalty: Optional[float] = 0.0 + seed: Optional[int] = None + stop: Optional[str] = None + suffix: Optional[str] = None + temperature: Optional[float] = 0.0 + top_k: Optional[int] = 0 + top_p: Optional[float] = 1.0 + user: Optional[str] = None + + +class OutputOpenAISpec(BaseModel): + """OpenAI Spec for the model""" + + id: Optional[str] = id + created: Optional[int] = int(time.time()) + object: Optional[str] = None + system_fingerpoint: Optional[str] = None + model: Optional[str] = "gpt-3.5-turbo" + max_new_tokens: Optional[int] = 100 + prompt: Optional[str] = "" + stream: Optional[bool] = False + sampling_params: Optional[Dict[str, Any]] = None + best_of: Optional[int] = 1 + echo: Optional[bool] = False + frequency_penalty: Optional[float] = 0.0 + logit_bias: Optional[Dict[str, Any]] = None + logprobs: Optional[int] = None + max_tokens: Optional[int] = None + n: Optional[int] = 1 + presence_penalty: Optional[float] = 0.0 + seed: Optional[int] = None + stop: Optional[str] = None + suffix: Optional[str] = None + temperature: Optional[float] = 0.0 + top_k: Optional[int] = 0 + top_p: Optional[float] = 1.0 + user: Optional[str] = None + usage: Optional[Dict[str, Any]] = None + completion_tokens: Optional[int] = None + prompt_tokens: Optional[int] = None + total_tokens: Optional[int] = None + choices: Optional[List[Dict[str, Any]]] = None + finish_reason: Optional[str] = None + index: Optional[int] = None + logprobs: Optional[Dict[str, Any]] = None + text: Optional[str] = None + conversation_id: Optional[str] = None + response_id: Optional[str] = None + timestamp: Optional[str] = None + status: Optional[str] = None + error: Optional[str] = None + error_message: Optional[str] = None + error_code: Optional[int] = None + error_details: Optional[str] = None + error_traceback: Optional[str] = None + error_cause: Optional[str] = None + error_type: Optional[str] = None + error_context: Optional[str] = None + +class OpenAIAPIWrapper: + """ + A wrapper class for the OpenAI API. + + This class provides methods to set and get the input and output specifications for the OpenAI API. + """ + + def __init__(self): + self.input_spec = InputOpenAISpec() + self.output_spec = OutputOpenAISpec() + + def set_input_spec(self, **kwargs): + """ + Set the input specification for the OpenAI API. + + Args: + **kwargs: Keyword arguments representing the input specification attributes and their values. + """ + for key, value in kwargs.items(): + if hasattr(self.input_spec, key): + setattr(self.input_spec, key, value) + + def set_output_spec(self, **kwargs): + """ + Set the output specification for the OpenAI API. + + Args: + **kwargs: Keyword arguments representing the output specification attributes and their values. + """ + for key, value in kwargs.items(): + if hasattr(self.output_spec, key): + setattr(self.output_spec, key, value) + + def get_input_spec(self): + """ + Get the input specification for the OpenAI API. + + Returns: + str: JSON representation of the input specification. + """ + return self.input_spec.json() + + def get_output_spec(self): + """ + Get the output specification for the OpenAI API. + + Returns: + str: JSON representation of the output specification. + """ + return self.output_spec.json() \ No newline at end of file