Skip to content

Latest commit

 

History

History
55 lines (44 loc) · 1.22 KB

README.md

File metadata and controls

55 lines (44 loc) · 1.22 KB

Train

Prepare training data in data/train directory as below:

  data
  └── train
      ├── video_1
            ├── hr
                    ├── hr0.png
                    ├── ...
                    └── hr30.png
            └── lr_x4_BI
                    ├── lr0.png
                    ├── ...
                    └── lr30.png
      ├── ...
      └── video_N
  • Run on CPU:
python train.py --scale 4 --patch_size 32 --batch_size 32 --n_iters 200000
  • Run on GPU:
python train.py --scale 4 --patch_size 32 --batch_size 32 --n_iters 200000 --gpu_mode True

Test

We provide the pretrained models (2x/3x/4x SR on BI degradation model and 4x SR on BD degradation model) for evaluation on the Vid4 dataset.

  • Generate LR test images (Matlab)

    • Run data/test/generate_LR_images.m
  • Inference

    • Run on CPU:
     python demo_Vid4.py --degradation BI --scale 4
    • Run on GPU:
     python demo_Vid4.py --degradation BI --scale 4 --gpu_mode True
    • Run on GPU (memory efficient):
     python demo_Vid4.py --degradation BI --scale 4 --gpu_mode True --chop_forward True
  • Evaluation (Matlab)

    • Run evaluation.m