Prepare training data in data/train
directory as below:
data
└── train
├── video_1
├── hr
├── hr0.png
├── ...
└── hr30.png
└── lr_x4_BI
├── lr0.png
├── ...
└── lr30.png
├── ...
└── video_N
- Run on CPU:
python train.py --scale 4 --patch_size 32 --batch_size 32 --n_iters 200000
- Run on GPU:
python train.py --scale 4 --patch_size 32 --batch_size 32 --n_iters 200000 --gpu_mode True
We provide the pretrained models (2x/3x/4x SR on BI degradation model and 4x SR on BD degradation model) for evaluation on the Vid4 dataset.
-
Generate LR test images (Matlab)
- Run data/test/generate_LR_images.m
-
Inference
- Run on CPU:
python demo_Vid4.py --degradation BI --scale 4
- Run on GPU:
python demo_Vid4.py --degradation BI --scale 4 --gpu_mode True
- Run on GPU (memory efficient):
python demo_Vid4.py --degradation BI --scale 4 --gpu_mode True --chop_forward True
-
Evaluation (Matlab)
- Run evaluation.m