forked from tensorflow/tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorflow_study4_addlayer.py
49 lines (40 loc) · 1.67 KB
/
tensorflow_study4_addlayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size])) #初始变量用随机值比用0好得多
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
L1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
prediction = add_layer(L1, 10, 1, activation_function=None)
loss = tf.reduce_mean(tf.square(ys - prediction))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) #学习率小于1即可
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) #非常重要的一步,激活init
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show() #会暂停,必须加上ion
for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
#print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs: x_data, ys: y_data})
lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
plt.pause(0.1)