-
Notifications
You must be signed in to change notification settings - Fork 245
/
Copy pathtflite.py
51 lines (41 loc) · 1.64 KB
/
tflite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright 2023 Huy Le Nguyen (@nglehuy)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from tensorflow_asr import keras, tf, tokenizers # import to aid logging messages
from tensorflow_asr.configs import Config
from tensorflow_asr.models.base_model import BaseModel
from tensorflow_asr.utils import app_util, cli_util, env_util, file_util
env_util.setup_logging()
def main(
config_path: str,
output: str,
h5: str = None,
bs: int = 1,
beam_width: int = 0,
repodir: str = os.path.realpath(os.path.join(os.path.dirname(__file__), "..")),
):
assert output
keras.backend.clear_session()
env_util.setup_seed()
config = Config(config_path, training=False, repodir=repodir)
tokenizer = tokenizers.get(config)
model: BaseModel = keras.models.model_from_config(config.model_config)
model.tokenizer = tokenizer
model.make(batch_size=bs)
if h5 and tf.io.gfile.exists(h5):
model.load_weights(h5, by_name=file_util.is_hdf5_filepath(h5))
model.summary()
app_util.convert_tflite(model=model, output=output, batch_size=bs, beam_width=beam_width)
if __name__ == "__main__":
cli_util.run(main)