forked from C00reNUT/Optimus-VIRTUOSO
-
Notifications
You must be signed in to change notification settings - Fork 2
/
optimus_virtuoso_relative_global_attention_edition.py
673 lines (508 loc) · 21.9 KB
/
optimus_virtuoso_relative_global_attention_edition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
# -*- coding: utf-8 -*-
"""Optimus_VIRTUOSO_Relative_Global_Attention_Edition.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/github/asigalov61/Optimus-VIRTUOSO/blob/main/Optimus_VIRTUOSO_Relative_Global_Attention_Edition.ipynb
# Optimus VIRTUOSO: Relative Global Attention Edition (WIP ver. 0.8)
## "Music never allows falsehoods for even the deaf hear flat notes!" ---OV
***
Powered by tegridy-tools TMIDIX Optimus Processors: https://github.com/asigalov61/tegridy-tools
***
Credit for GPT2-RGA code used in this colab goes out @ Sashmark97 https://github.com/Sashmark97/midigen and @ Damon Gwinn https://github.com/gwinndr/MusicTransformer-Pytorch
***
WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/
***
#### Project Los Angeles
#### Tegridy Code 2021
***
# (Setup Environment)
"""
#@title nvidia-smi gpu check
!nvidia-smi
#@title Install all dependencies (run only once per session)
!git clone https://github.com/asigalov61/tegridy-tools
!pip install torch
!pip install tqdm
!pip install matplotlib
#@title Import all needed modules
print('Loading needed modules. Please wait...')
import os
from datetime import datetime
import secrets
import copy
import tqdm
from tqdm import auto
if not os.path.exists('/content/Dataset'):
os.makedirs('/content/Dataset')
print('Loading TMIDIX module...')
os.chdir('/content/tegridy-tools/tegridy-tools')
import TMIDIX
os.chdir('/content/tegridy-tools/tegridy-tools')
from GPT2RGA import *
import matplotlib.pyplot as plt
from IPython.display import display, Javascript, HTML, Audio
from google.colab import output, drive
os.chdir('/content/')
"""# (QUICK DEMO)"""
# Commented out IPython magic to ensure Python compatibility.
#@title Download pre-trained Optimus VIRTUOSO RGA Model
#@markdown NOTE: After you download the model, you can go straight to the load section and then to music generation
#@markdown NOTE: You do not need to change any settings to run this model. Just use the colab defaults.
# %cd /content/
print('=' * 70)
print('Downloading pre-trained dataset-model...Please wait...')
print('=' * 70)
!wget 'https://github.com/asigalov61/Optimus-VIRTUOSO/raw/main/Dataset-Model/Relative-Global-Attention/Optimus-VIRTUOSO-Trained-Model.zip.001'
!wget 'https://github.com/asigalov61/Optimus-VIRTUOSO/raw/main/Dataset-Model/Relative-Global-Attention/Optimus-VIRTUOSO-Trained-Model.zip.002'
!cat Optimus-VIRTUOSO-Trained-Model.zip* > Optimus-VIRTUOSO-Dataset-Model.zip
print('=' * 70)
!unzip -j Optimus-VIRTUOSO-Dataset-Model.zip
print('=' * 70)
print('Done! Enjoy! :)')
print('=' * 70)
# %cd /content/
"""# (FROM SCRATCH) Download and process MIDI dataset"""
# Commented out IPython magic to ensure Python compatibility.
#@title Download Endless Piano Carousel MIDI dataset (Recommended)
#@markdown Solo Piano
#@markdown Works best stand-alone/as-is for the optimal results
# %cd /content/Dataset/
!wget 'https://github.com/asigalov61/Tegridy-MIDI-Dataset/raw/master/Endless-Piano-Carousel-CC-BY-NC-SA.zip'
!unzip -j '/content/Dataset/Endless-Piano-Carousel-CC-BY-NC-SA.zip'
!rm '/content/Dataset/Endless-Piano-Carousel-CC-BY-NC-SA.zip'
# %cd /content/
#@title Process MIDIs to special MIDI dataset with Tegridy MIDI Processor
#@markdown IMPORTANT NOTES:
#@markdown 0) FOR NOW THE IMPLEMENTATION IS TUNED TO PIANO ONLY w/o MIDI CHANNELS and w/o VELOCITIES. This will be corrected in the first release version
#@markdown 1) Dataset MIDI file names are used as song names. Feel free to change it to anything you like
#@markdown 2) Best results are achieved with the single-track, single-channel, single-instrument MIDI 0 files with plain English names (avoid special or sys/foreign chars)
#@markdown 3) MIDI Channel = -1 means all MIDI channels except the drums. MIDI Channel = 16 means all channels will be processed. Otherwise, only single indicated MIDI channel will be processed
desired_dataset_name = "Optimus-VIRTUOSO-Music-Dataset" #@param {type:"string"}
file_name_to_output_dataset_to = "/content/Optimus-VIRTUOSO-Music-Dataset" #@param {type:"string"}
desired_MIDI_channel_to_process = 0 #@param {type:"slider", min:-1, max:16, step:1}
sorted_or_random_file_loading_order = True #@param {type:"boolean"}
encode_velocities = False #@param {type:"boolean"}
encode_MIDI_channels = False #@param {type:"boolean"}
add_transposed_dataset_by_this_many_pitches = 0 #@param {type:"slider", min:-12, max:12, step:1}
add_transposed_and_flipped_dataset = False #@param {type:"boolean"}
chordify_input_MIDIs = False #@param {type:"boolean"}
melody_conditioned_chords = False #@param {type:"boolean"}
melody_pitch_baseline = 60 #@param {type:"slider", min:0, max:127, step:1}
time_denominator = 10 #@param {type:"slider", min:1, max:50, step:1}
transform_to_pitch = 0 #@param {type:"slider", min:0, max:127, step:1}
perfect_timings = True #@param {type:"boolean"}
MuseNet_encoding = True #@param {type:"boolean"}
chars_encoding_offset = 33#@param {type:"number"}
print('TMIDI Optimus MIDI Processor')
print('Starting up...')
###########
average_note_pitch = 0
min_note = 127
max_note = 0
files_count = 0
gfiles = 0
chords_list_f = []
melody_list_f = []
chords_list = []
chords_count = 0
melody_chords = []
melody_count = 0
TXT_String = ''
TXT = ''
melody = []
chords = []
INTS_f = []
###########
print('Loading MIDI files...')
print('This may take a while on a large dataset in particular.')
dataset_addr = "/content/Dataset/"
os.chdir(dataset_addr)
filez = list()
for (dirpath, dirnames, filenames) in os.walk(dataset_addr):
filez += [os.path.join(dirpath, file) for file in filenames]
print('=' * 70)
if filez == []:
print('Could not find any MIDI files. Please check Dataset dir...')
print('=' * 70)
if sorted_or_random_file_loading_order:
print('Sorting files...')
filez.sort()
print('Done!')
print('=' * 70)
# Stamping the dataset info
print('Stamping the dataset info...')
TXT_String += 'DATASET=' + str(desired_dataset_name) + chr(10)
TXT_String += 'CREATED_ON=' + str(datetime.now()).replace(' ', '-').replace(':', '-').replace('.', '-') + chr(10)
TXT_String += 'CHARS_ENCODING_OFFSET=' + str(chars_encoding_offset) + chr(10)
TXT_String += 'TIME_DENOMINATOR=' + str(time_denominator) + chr(10)
TXT_String += 'TRANSFORM=' + str(transform_to_pitch) + chr(10)
TXT_String += 'PERFECT_TIMINGS=' + str(perfect_timings) + chr(10)
TXT_String += 'MUSENET_ENCODING=' + str(MuseNet_encoding) + chr(10)
TXT_String += 'TRANSPOSED_BY=' + str(add_transposed_dataset_by_this_many_pitches) + chr(10)
TXT_String += 'TRANSPOSED_AND_FLIPPED=' + str(add_transposed_and_flipped_dataset) + chr(10)
TXT_String += 'LEGEND=STA-DUR-PTC'
if encode_velocities:
TXT_String += '-VEL'
if encode_MIDI_channels:
TXT_String += '-CHA'
TXT_String += chr(10)
print('Processing MIDI files. Please wait...')
for f in tqdm(filez):
try:
fn = os.path.basename(f)
fn1 = fn.split('.')[0]
files_count += 1
TXT, melody, chords, bass_melody, karaokez, INTS, aux1, aux2 = TMIDIX.Optimus_MIDI_TXT_Processor(f, chordify_TXT=chordify_input_MIDIs, output_MIDI_channels=encode_MIDI_channels, char_offset=chars_encoding_offset, dataset_MIDI_events_time_denominator=time_denominator, output_velocity=encode_velocities, MIDI_channel=desired_MIDI_channel_to_process, MIDI_patch=range(0, 127), melody_conditioned_encoding=melody_conditioned_chords, melody_pitch_baseline=melody_pitch_baseline, perfect_timings=perfect_timings, musenet_encoding=MuseNet_encoding, transform=transform_to_pitch)
TXT_String += TXT
melody_list_f += melody
chords_list_f += chords
INTS_f.extend(INTS)
gfiles += 1
if add_transposed_dataset_by_this_many_pitches != 0:
TXT, melody, chords, bass_melody, karaokez, INTS, aux1, aux2 = TMIDIX.Optimus_MIDI_TXT_Processor(f, chordify_TXT=chordify_input_MIDIs, output_MIDI_channels=encode_MIDI_channels, char_offset=chars_encoding_offset, dataset_MIDI_events_time_denominator=time_denominator, output_velocity=encode_velocities, MIDI_channel=desired_MIDI_channel_to_process, transpose_by=add_transposed_dataset_by_this_many_pitches, MIDI_patch=range(0, 127), melody_conditioned_encoding=melody_conditioned_chords, melody_pitch_baseline=melody_pitch_baseline, perfect_timings=perfect_timings, musenet_encoding=MuseNet_encoding, transform=transform_to_pitch)
TXT_String += TXT
melody_list_f += melody
chords_list_f += chords
INTS_f.extend(INTS)
gfiles += 1
if add_transposed_and_flipped_dataset == True:
TXT, melody, chords, bass_melody, karaokez, INTS, aux1, aux2 = TMIDIX.Optimus_MIDI_TXT_Processor(f, chordify_TXT=chordify_input_MIDIs, output_MIDI_channels=encode_MIDI_channels, char_offset=chars_encoding_offset, dataset_MIDI_events_time_denominator=time_denominator, output_velocity=encode_velocities, MIDI_channel=desired_MIDI_channel_to_process, transpose_by=-12, MIDI_patch=range(0, 127), flip=True, melody_conditioned_encoding=melody_conditioned_chords, melody_pitch_baseline=melody_pitch_baseline, perfect_timings=perfect_timings, musenet_encoding=MuseNet_encoding, transform=transform_to_pitch)
TXT_String += TXT
melody_list_f += melody
chords_list_f += chords
INTS_f.extend(INTS)
gfiles += 1
except KeyboardInterrupt:
print('Saving current progress and quitting...')
break
except:
print('Bad MIDI:', f)
continue
TXT_String += 'TOTAL_SONGS_IN_DATASET=' + str(gfiles)
try:
print('Task complete :)')
print('==================================================')
if add_transposed_dataset_by_this_many_pitches != 0:
print('NOTE: Transposed dataset was added per users request.')
print('==================================================')
if add_transposed_and_flipped_dataset == True:
print('NOTE: Flipped dataset was added per users request.')
print('==================================================')
print('Number of processed dataset MIDI files:', files_count)
print('Number of MIDI chords recorded:', len(chords_list_f))
print('First chord event:', chords_list_f[0], 'Last chord event:', chords_list_f[-1])
print('Number of recorded melody events:', len(melody_list_f))
print('First melody event:', melody_list_f[0], 'Last Melody event:', melody_list_f[-1])
print('Total number of MIDI events recorded:', len(chords_list_f) + len(melody_list_f))
print('==================================================')
# Writing dataset to TXT file
with open(file_name_to_output_dataset_to + '.txt', 'wb') as f:
f.write(TXT_String.encode('utf-8', 'replace'))
f.close
# Dataset
MusicDataset = [chords_list_f, melody_list_f, INTS_f]
# Writing dataset to pickle file
TMIDIX.Tegridy_Any_Pickle_File_Writer(MusicDataset, file_name_to_output_dataset_to)
except:
print('=' * 70)
print('IO Error!')
print('Please check that Dataset dir is not empty/check other IO code.')
print('=' * 70)
print('Shutting down...')
print('=' * 70)
#@title Load processed INTs datasets
number_of_batches = 4 #@param {type:"slider", min:2, max:32, step:2}
print('=' * 50)
print('Prepping INTs datasets...')
train_data = []
for i in INTS_f:
if i[0] < TOKEN_END and i[1] < TOKEN_END:
# train_data.extend(i)
train_data.extend([i[0], i[1], i[3]])
train_data.extend([10])
val_dataset = train_data[:int(len(train_data) * 0.3)]
test_dataset = train_data[:int(len(train_data) * 0.3)]
train_list = train_data
val_list = val_dataset
test_list = []
print('=' * 50)
print('Processing INTs datasets...')
train_dataset = EPianoDataset(train_list, max_seq, random_seq)
val_dataset = EPianoDataset(val_list, max_seq)
test_dataset = EPianoDataset(test_list, max_seq)
print('=' * 50)
print('Loading INTs datasets...')
batch_size = number_of_batches
train_loader = DataLoader(train_dataset, batch_size=batch_size, num_workers=n_workers, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, num_workers=n_workers)
test_loader = DataLoader(test_dataset, batch_size=batch_size, num_workers=n_workers)
print('=' * 50)
print('Total INTs in the dataset', len(train_data))
print('Total unique INTs in the dataset', len(set(train_data)))
print('Max INT in the dataset', max(train_data))
print('Min INT in the dataset', min(train_data))
print('=' * 50)
print('Checking datasets shapes...')
print('=' * 50)
print('Train loader')
for x, tgt in train_loader:
print(f'X shape: {x.shape}')
print(f'Target shape: {tgt.shape}')
break
print('=' * 50)
print('Validation loader')
for x, tgt in val_loader:
print(f'X shape: {x.shape}')
print(f'Target shape: {tgt.shape}')
break
print('=' * 50)
print('Test loader')
for x, tgt in test_loader:
print(f'X shape: {x.shape}')
print(f'Target shape: {tgt.shape}')
break
print('=' * 50)
print('Done! Enjoy! :)')
print('=' * 50)
"""# (TRAIN)
# Train the model
"""
#@title Train
config = GPTConfig(VOCAB_SIZE,
max_seq,
dim_feedforward=dim_feedforward,
n_layer=6,
n_head=8,
n_embd=512,
enable_rpr=True,
er_len=max_seq)
model = GPT(config).to(get_device())
#=====
init_step = 0
lr = LR_DEFAULT_START
lr_stepper = LrStepTracker(d_model, SCHEDULER_WARMUP_STEPS, init_step)
eval_loss_func = nn.CrossEntropyLoss(ignore_index=TOKEN_PAD)
train_loss_func = eval_loss_func
opt = Adam(model.parameters(), lr=lr, betas=(ADAM_BETA_1, ADAM_BETA_2), eps=ADAM_EPSILON)
lr_scheduler = LambdaLR(opt, lr_stepper.step)
#===
best_eval_acc = 0.0
best_eval_acc_epoch = -1
best_eval_loss = float("inf")
best_eval_loss_epoch = -1
best_acc_file = '/content/gpt2_rpr_acc.pth'
best_loss_file = '/content/gpt2_rpr_loss.pth'
loss_train, loss_val, acc_val = [], [], []
for epoch in range(0, epochs):
new_best = False
loss = train(epoch+1, model, train_loader, train_loss_func, opt, lr_scheduler, num_iters=-1)
loss_train.append(loss)
eval_loss, eval_acc = eval_model(model, val_loader, eval_loss_func, num_iters=-1)
loss_val.append(eval_loss)
acc_val.append(eval_acc)
if(eval_acc > best_eval_acc):
best_eval_acc = eval_acc
best_eval_acc_epoch = epoch+1
torch.save(model.state_dict(), best_acc_file)
new_best = True
if(eval_loss < best_eval_loss):
best_eval_loss = eval_loss
best_eval_loss_epoch = epoch+1
torch.save(model.state_dict(), best_loss_file)
new_best = True
if(new_best):
print("Best eval acc epoch:", best_eval_acc_epoch)
print("Best eval acc:", best_eval_acc)
print("")
print("Best eval loss epoch:", best_eval_loss_epoch)
print("Best eval loss:", best_eval_loss)
#@title Plot resulting training loss graph
tr_loss_list = [item for sublist in loss_train for item in sublist]
plt.plot([i for i in range(len(tr_loss_list))] ,tr_loss_list, 'b')
plt.savefig('/content/training-loss.png')
"""# (SAVE/LOAD)"""
#@title Save the model
print('Saving the model...')
full_path_to_model_checkpoint = "/content/Optimus-VIRTUOSO-Trained-Model.pth" #@param {type:"string"}
torch.save(model.state_dict(), full_path_to_model_checkpoint)
print('Done!')
#@title Load/re-load the model
full_path_to_model_checkpoint = "/content/Optimus-VIRTUOSO-Trained-Model.pth" #@param {type:"string"}
print('Loading the model...')
config = GPTConfig(VOCAB_SIZE,
max_seq,
dim_feedforward=dim_feedforward,
n_layer=6,
n_head=8,
n_embd=512,
enable_rpr=True,
er_len=max_seq)
model = GPT(config).to(get_device())
model.load_state_dict(torch.load(full_path_to_model_checkpoint))
print('Done!')
"""# (GENERATE MUSIC)"""
#@title Generate and download a MIDI file
number_of_tokens_to_generate = 1024 #@param {type:"slider", min:8, max:2048, step:8}
use_random_primer = True #@param {type:"boolean"}
number_of_ticks_per_quarter = 500 #@param {type:"slider", min:50, max:1000, step:50}
dataset_time_denominator = 10
melody_conditioned_encoding = False
encoding_has_MIDI_channels = False
encoding_has_velocities = False
simulate_velocity = True #@param {type:"boolean"}
save_only_first_composition = True
chars_encoding_offset_used_for_dataset = 33
fname = '/content/Optimus-VIRTUOSO-Composition'
print('Optimus VIRTUOSO Model Generator')
output_signature = 'Optimus VIRTUOSO'
song_name = 'RGA Composition'
model.eval()
if use_random_primer:
sequence = [random.randint(10, 387) for i in range(64)]
idx = secrets.randbelow(len(sequence))
rand_seq = model.generate(torch.Tensor(sequence[idx:idx+120]), target_seq_length=number_of_tokens_to_generate)
out = rand_seq[0].cpu().numpy().tolist()
else:
out = []
try:
idx = secrets.randbelow(len(train_data))
rand_seq = model.generate(torch.Tensor(train_data[idx:idx+120]), target_seq_length=number_of_tokens_to_generate)
out = rand_seq[0].cpu().numpy().tolist()
except:
print('=' * 50)
print('Error! Try random priming instead!')
print('Shutting down...')
print('=' * 50)
if len(out) != 0:
song = []
sng = []
for o in out:
if o != 10:
sng.append(o)
else:
if len(sng) == 3:
song.append(sng)
sng = []
char_offset = 33
song_f = []
time = 0
for s in song:
song_f.append(['note', (abs(time)) * 10, (s[1]-char_offset) * 10, 0, s[2]-char_offset, s[2]-char_offset])
time += s[0] - char_offset
detailed_stats = TMIDIX.Tegridy_SONG_to_MIDI_Converter(song_f,
output_signature = output_signature,
output_file_name = fname,
track_name=song_name,
number_of_ticks_per_quarter=number_of_ticks_per_quarter)
print('Done!')
print('Downloading your composition now...')
from google.colab import files
files.download(fname + '.mid')
print('=' * 70)
print('Detailed MIDI stats:')
for key, value in detailed_stats.items():
print('=' * 70)
print(key, '|', value)
print('=' * 70)
else:
print('Models output is empty! Check the code...')
print('Shutting down...')
#@title Auto-Regressive Generator
#@markdown NOTE: You much generate a seed composition first or it is not going to start
number_of_cycles_to_run = 5 #@param {type:"slider", min:1, max:50, step:1}
number_of_prime_tokens = 64 #@param {type:"slider", min:32, max:128, step:8}
print('=' * 70)
print('Optimus VIRTUOSO Auto-Regressive Model Generator')
print('=' * 70)
print('Starting up...')
print('=' * 70)
print('Prime length:', len(out))
print('Prime tokens:', number_of_prime_tokens)
print('Prime input sequence', out[-8:])
if len(out) != 0:
print('=' * 70)
out_all = []
out_all.append(out)
for i in tqdm(range(number_of_cycles_to_run)):
rand_seq1 = model.generate(torch.Tensor(out[-number_of_prime_tokens:]), target_seq_length=1024)
out1 = rand_seq1[0].cpu().numpy().tolist()
out_all.append(out1[number_of_prime_tokens:])
out = out1[number_of_prime_tokens:]
print(chr(10))
print('=' * 70)
print('Block number:', i+1)
print('Composition length so far:', (i+1) * 1024, 'notes')
print('=' * 70)
print('Done!' * 70)
print('Total blocks:', i+1)
print('Final omposition length:', (i+1) * 1024, 'notes')
print('=' * 70)
out2 = []
for o in out_all:
out2.extend(o)
if len(out2) != 0:
song = []
sng = []
for o in out2:
if o != 10:
sng.append(o)
else:
if len(sng) == 3:
song.append(sng)
sng = []
char_offset = 33
song_f = []
time = 0
for s in song:
song_f.append(['note', (abs(time)) * 10, (s[1]-char_offset) * 10, 0, s[2]-char_offset, s[2]-char_offset])
time += s[0] - char_offset
song_name = 'Auto-Regressive RGA Composition'
detailed_stats = TMIDIX.Tegridy_SONG_to_MIDI_Converter(song_f,
output_signature = output_signature,
output_file_name = fname,
track_name=song_name,
number_of_ticks_per_quarter=number_of_ticks_per_quarter)
print('Done!')
print('Downloading your composition now...')
from google.colab import files
files.download(fname + '.mid')
print('=' * 70)
print('Detailed MIDI stats:')
for key, value in detailed_stats.items():
print('=' * 70)
print(key, '|', value)
print('=' * 70)
else:
print('=' * 70)
print('INPUT ERROR !!!')
print('Prime sequence is empty...')
print('Please generate prime sequence and retry')
print('=' * 70)
"""# (PLOT AND LISTEN)"""
#@title Install prerequisites
!apt install fluidsynth #Pip does not work for some reason. Only apt works
!pip install midi2audio
!pip install pretty_midi
#@title Plot and listen to the last generated composition
#@markdown NOTE: May be very slow with the long compositions
from midi2audio import FluidSynth
from IPython.display import display, Javascript, HTML, Audio
import pretty_midi
import librosa.display
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
import numpy as np
print('Synthesizing the last output MIDI... ')
# fname = '/content/Endless-Piano-Music-Composition'
fn = os.path.basename(fname + '.mid')
fn1 = fn.split('.')[0]
print('Plotting the composition. Please wait...')
pm = pretty_midi.PrettyMIDI(fname + '.mid')
# Retrieve piano roll of the MIDI file
piano_roll = pm.get_piano_roll()
plt.figure(figsize=(14, 5))
librosa.display.specshow(piano_roll, x_axis='time', y_axis='cqt_note', fmin=1, hop_length=160, sr=16000, cmap=plt.cm.hot)
plt.title(fn1)
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
Audio(str(fname + '.wav'), rate=16000)
"""# Congrats! You did it! :)"""