-
Notifications
You must be signed in to change notification settings - Fork 1
/
Measure Theory 2
162 lines (152 loc) · 15.9 KB
/
Measure Theory 2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
\documentclass[a4paper,english,12pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage[mathscr]{eucal}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{cor}[thm]{Corollary}
\newtheorem{defn}[thm]{Definition}
\newtheorem{conj}[thm]{Conjecture}
\newtheorem{exmp}[thm]{Example}
\newtheorem{assum}[thm]{Assumptions}
\newtheorem{rem}{Remark}
\newtheorem{note}{Note}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\Real}{\mathbb{R}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\makeatletter
\def\th@plain{%
\thm@notefont{}% same as heading font
\itshape % body font
}
\def\th@definition{%
\thm@notefont{}% same as heading font
\normalfont % body font
}
\makeatother
\date{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%opening
\title{Lecture 2: Measures}
\author{}
\begin{document}
\maketitle
\section{Measures : Sigma Algebra and its properties}
\begin{lem}
If $\mathcal{A}\subseteq\sigma(\mathcal{F})$,then $\sigma(\mathcal{A})\subseteq\sigma(\mathcal{F})$.
\end{lem}
\begin{proof}
$\sigma(\mathcal{A})$ denotes the intersection of sigma-algebras containing $ \mathcal{A} $. Since $\sigma(\mathcal{F})$ is a $\sigma$-algebra containing $ \mathcal{A} $, $\sigma(\mathcal{A})$is contained in $\sigma(\mathcal{F}) $. Thus $\sigma(\mathcal{A})\subseteq\sigma(\mathcal{F})$.
\end{proof}
\begin{defn}
Let $ (X,\mathcal{T}) $ be a topological space. Then the $sigma $-Algbera generated by all open sets is called the "Borel $\sigma$-Algebra" on $ (X,\mathcal{T}) $ and is denoted by $ \mathcal{B}_x $.The members of $\mathcal{B}_x $ are called Borel Sets.
\end{defn}
\begin{note}
\begin{enumerate}
$\mathcal{B}_x $ thus includes open sets,closed sets,countable intersections of open sets,countable intersection of closed sets and so forth.
\end{enumerate}
\end{note}
\begin{defn}
A countable intersection of open sets is called a $ G_\delta$ set.A countable union of closed sets is called an $ F_\sigma $ set. A countable union of $ G_delta$ sets is called $ G_{\delta \sigma}$ set and finally a countable intersection of $F _\sigma $ sets is called an $ F_{\sigma \delta}$ set.
\end{defn}
\begin{exmp}
Let X be a non-empty set.
\begin{enumerate}
\item $ \mathcal{P}(X) $ is $ \sigma $-algebra.
\item $ \mathcal{A}=\{X,\emptyset\} $ is the smallest $\sigma$-algbera on X and is called trivial $\sigma$-algebra.
\item $ \mathcal{A}=\{A\subseteq X \mid A\;or \;X \setminus A\;is\;countable\} $ is a $\sigma$-algebra and is called "countbale cocountable sigma $\sigma$-algebra".It is the smallest $\sigma$-algebra containing all singletons.Hence $\{x\}\in \mathcal{A}\;,\forall x\in X$.
\begin{proof}
By definition a cocountable subset of X is a subset Y whose complement in X is a countbale set.The set of all subsets of X which are either countbale or cocountbale form a "countbale cocountable sigma $\sigma$-algebra".\newline
Since $\emptyset$ is countbale, $\emptyset \in \mathcal{A}$. By definition ,if $A\in\mathcal{A}$, then either A or $A^c$ is countable.If A is countable, then $A^c$ is cocountable and vice versa. Hence for both cases, we have $A^c \in \mathcal{A}$. Thus $\mathcal{A}$ is closed under complementation.\newline
Let $\{A_j\;\mid\;j\in\mathbb{N}\}\in\mathcal{A}$. Let A=$\bigcup_{j\in\mathbb{N}} A_j$.The sets $A_j$ may be countable or coucountable.We need to show $A\in\mathcal{A}$.Let us counsider 2 cases.\newline
\textbf{Case 1:} $A_j$ is countbale $\forall\;j\in\mathbb{N}$.Since the countable union of countable sets is also countable, thus $A\in\mathcal{A}$.\newline
\textbf{Case 2:} Let us consider, there exists some $j\in\mathbb{N}$ such that $A_j$ is cocountable. Now $A_j\subseteq A$. Hence $A^c \subseteq A_j{^c}$ . Since the set A is cocountbale, the set $A^c$ is countable. Hence the set A is cocountable. So A$\in\mathcal{A}$. Thus the set $\mathcal{A}$ is closed under complements and countbale unions and is a $\sigma$-algebra.\newline
\textbf{For the second part of the proof}, we will show that $\mathcal{A}$ is the $\sigma$-algebra generated by all singletons of X. Let $\mathcal{N}$ denote the $\sigma$-algebra generated by all singletons of X. We need to show $\mathcal{N}=\mathcal{A}$.\newline
By our assumption, $\mathcal{N}$ is smallest $\sigma$-algebra containing all singeltons. Since each singleton is coutnable, $\mathcal{N} \subseteq \mathcal{A}$.\newline
Let $P\subseteq X$ and without any loss of generality, we can assume that P is a non-empty set. If P is countable, then P can be written as a countable union of all its singletons. Each of these singletons is an element in $\mathcal{N}$.Thus $P\in\mathcal{N}$. Since the choice of P was arbitrary, $\mathcal{A} \subseteq \mathcal{N}$.\newline
If P is cocountable, then $P^c$ is countable, hence $P^c\in\mathcal{N}$.Again, $\mathcal{N}$ is a $\sigma$-algebra, so.So $P\in\mathcal{N}$. Hence $P\in\mathcal{N}$ and so we can infer that $\mathcal{A} \subseteq \mathcal{N}$.\newline
Thus we have shown that $\mathcal{A} \subseteq \mathcal{N}$ and $\mathcal{N} \subseteq \mathcal{A}$. Hence $\mathcal{N}=\mathcal{A}$.
\end{proof}
\item The "Borel $\sigma$-Algebra" on $\Real$ in usual topology is denoted by $\mathcal{B}_\Real$.
\begin{prop}
The $\sigma$-Algebra denoted by $\mathcal{B}_\Real$ on $\Real$ (in ususal topology) is generated by each of the following:\newline
\begin{itemize}
\item Open intervals denoted by $\mathcal{E}_1=\{(a,b)\:\mid\:a<b\}$.
\item Closed intervals denoted by $\mathcal{E}_2=\{[a,b]\:\mid\:a<b\}$.
\item Half-Open intervals denoted by $\mathcal{E}_3=\{(a,b]\:\mid\:a<b\}\:and\: \mathcal{E}_4=\{[a,b)\:\mid\:a<b\}$.
\item Open Rays denoted by $\mathcal{E}_5=\{(a,\infty)\}\:and\:\mathcal{E}_6=\{(-\infty,a)\}$.
\item Open Rays denoted by $\mathcal{E}_7=\{[a,\infty)\}\:and\:\mathcal{E}_8=\{(-\infty,a]\}$.
\end{itemize}
\end{prop}
\end{enumerate}
\begin{proof}
Among all the above stated elements, all are either open or closed sets except for $\mathcal{E}_3\:and\:\mathcal{E}_4$. But $\mathcal{E}_3\:and\:\mathcal{E}_4$ can be expressed as countable intersections of closed intervals. We can write $(a,b]=\bigcap_{n\in \mathbb{N}}(a,b+\frac{1}{n})$ and $[a,b)=\bigcap_{n\in \mathbb{N}}(a-\frac{1}{n},b)$.So all the elements are Borel sets, thus by \textbf{Lemma 1.1}, $\sigma(\mathcal{E}_j)\subseteq \mathcal{B}_\Real$.\newline
By definiton, Borel $\sigma$-algebra on $\Real$ is the $\sigma$-algebra generated by all open intervals. Any open interval over $\Real$ can be expressed as a countabale union of intervals of the form $(a,b)$. Hence $\mathcal{B}_\Real\subseteq \sigma(\mathcal{E}_1)$.\newline
To prove that $\mathcal{B}_\Real\subseteq \sigma(\mathcal{E}_j)$ for $j\geq 2$, we will show that the open interval $(a,b)$ can be expressed as a compliment,countable intersection and union of the other elements.Let us consider the following cases:\newline
\begin{itemize}
\item$(a,b)=\bigcup_{n\in \mathbb{N}}(a+\frac{1}{n},b-\frac{1}{n})$.
\item$(a,b)=(a,b]\cap[a,b)$.
\item$(a,b)=(a,\infty)\cap(-\infty,b)$.
\item$(a,b)=[b,\infty)^c\cap(-\infty,a]^c$.
\end{itemize}
Thus for the $\sigma$-algebras generated by the elements $\mathcal{E}_j$ for $j\geq 2$, we have shown that the open-intervals can be expressed in terms of compliments,countable unions and intersections of the elements of $\sigma(\mathcal{E}_j) $for $j\geq 2$. Thus we have shown that $\mathcal{B}_\Real \subseteq \sigma(\mathcal{E}_j) $ for $1\leq j \geq 8$. Hence our propsition is proved.
\end{proof}
\end{exmp}
\section{Measurable Mapping}
\begin{defn}
A pair (X,$\mathcal{F}_c$) consisting of a non empty set X and the $\sigma$-Algebra of its subsets is called a "measurable space". The elements of $\mathcal{F}_c$ are called "measurable" in $\mathcal{F}_c$.
\end{defn}
\begin{defn}
A function $f:X\rightarrow Y$ where (X,$\mathcal{F}$) and (Y,$\mathcal{G}$) are measurable spaces, is ($\mathcal{F},\mathcal{G}$) measurable, if $f^{-1}(B)\in \mathcal{F}$ $\forall\:B\in\mathcal{G}$.
\end{defn}
\begin{prop}
(A Measurability Criterion)Let (X,$\mathcal{F}$) and (Y,$\mathcal{G}$) be 2 measurable spaces. Let $\mathcal{C}\in\mathcal{G}$ such that $\sigma(\mathcal{C})=\mathcal{G}$.If $f:X\rightarrow Y$ be a function with property that if $f^{-1}(C)\in \mathcal{F}$ $\forall\:C\in\mathcal{G}$. The function f is ($\mathcal{F},\mathcal{G}$) measurable.
\end{prop}
\begin{proof}
Let us define a set $\mathcal{D}=\{B\subseteq Y\:\mid\:f^{-1}(B)\in\mathcal{F}\}$.\newline
\textbf{We will now prove that $\mathcal{D}$ is a $\sigma$-algebra}.\newline
\begin{proof}
Let us assume A be a set such that A$\in\mathcal{D}$.we need to show $A^c\in\mathcal{D}$.By definition, since $\mathcal{F}$ is a sigma algebra, ${f^{-1}(A)}^c\in\mathcal{F}$. So now we need to show $\{f^{-1}(A)\}^c=f^{-1}(A^c)$.\newline
Now, let $x\in f^{-1}(A^c)$. So there exists an element $x\in X$ such that f(x)$\in A^c$. Thus f(x)$\notin A$. Thus, x$\notin f^{-1}(A)$. Hence x$\in\{f^{-1}(A)\}^c$. From this, we can infer that $f^{-1}(A^c)\subseteq \{f^{-1}(A)\}^c$.\newline
Let y$\in \{f^{-1}(A)\}^c$.So, y is an elment in the set X such that y$\notin f^{-1}(A)$.As a result, f(y)$\notin A$.Then we can write f(y)$\in A^c$ which in turn implies y$\in f^{-1}(A^c)$.
So, we have shown $f^{-1}(A^c)\supseteq \{f^{-1}(A)\}^c$. Since the choice of x and y was arbitrary, we can conclude that $\{f^{-1}(A)\}^c=f^{-1}(A^c)$ which proves that $\mathcal{D}$ is closed under complementation.\newline
We will now show that $\mathcal{D}$ is closed under countable unions.Let ,$\{A_j\;\mid\;j\in\mathbb{N}\}\in\mathcal{D}$. We consider the sets, $f^{-1}\{\bigcup_{n\in\mathbb{N}}(A_n)\}$ and $\bigcup_{n \in \mathbb{N}}f^{-1}(A_n)$.Let x$\in f^{-1}\{\bigcup_{n\in\mathbb{N}}(A_n)\}$. So, f(x) $\in \bigcup_{n\in\mathbb{N}}(A_n)$. Thus f(x)$\in some A_k$ where $k\in\mathbb{N}$. Thus x $\in f^{-1}A_k$ where $k\in\mathbb{N}$.Thus x$\in \bigcup_{n \in \mathbb{N}}f^{-1}(A_n)$. Hence $f^{-1}\{\bigcup_{n\in\mathbb{N}}(A_n)\} \subseteq\bigcup_{n \in \mathbb{N}}f^{-1}(A_n)$.\newline
Let y $\in \bigcup_{n \in \mathbb{N}}f^{-1}(A_n)$. Thus y $\in f^{-1}(A_p)$ where p $\in N$. Thus f(y) $\in A_p$ $\in N$. So, f(y) $\in \bigcup_{n\in\mathbb{N}}(A_n)$. Hence y$\in f^{-1}\{\bigcup_{n\in\mathbb{N}}(A_n)\}$. So,$f^{-1}\{\bigcup_{n\in\mathbb{N}}(A_n)\} \supseteq\bigcup_{n \in \mathbb{N}}f^{-1}(A_n)$. Since the choice of x and y was arbitrary,$f^{-1}\{\bigcup_{n\in\mathbb{N}}(A_n)\}=\bigcup_{n \in \mathbb{N}}f^{-1}(A_n)$.\newline
Now, as $\{A_j\;\mid\;j\in\mathbb{N}\}\in\mathcal{D}$ and $\mathcal{F}$ is a sigma algebra, $ f^{-1}\{\bigcup_{n\in\mathbb{N}}(A_n)\}\in \mathcal{F}$ and as $f^{-1}\{\bigcup_{n\in\mathbb{N}}(A_n)\}=\bigcup_{n \in \mathbb{N}}f^{-1}(A_n)$, $\bigcup_{n \in \mathbb{N}}f^{-1}(A_n) \in \mathcal{D}$. Thus $\mathcal{D}$ is closed under countable unions and complemenetation. Hence it is a $\sigma$-algebra.
\end{proof}
By the construction of $\mathcal{D}$, $\mathcal{C}\subseteq \mathcal{D}$. So $\sigma(\mathcal{C})\subseteq \sigma(\mathcal{D})$. As $\sigma(\mathcal{C})=\mathcal{G}$, $\mathcal{G}\subseteq \sigma(\mathcal{D})$.Hence the function f is ($\mathcal{F},\mathcal{G}$) measurable.
\end{proof}
\begin{prop}
Let (X,$\mathcal{F}$) and (Y,$\mathcal{G}$) be 2 measurable spaces. Let (X,$\mathcal{T}_x$) and (Y,$\mathcal{T}_y$) be 2 topological spaces and $\mathcal{F}\:and\:\mathcal{G}$ are the corresponding Borel $\sigma$-algebras.Then every continuous function f:$X\rightarrow Y$ is ($\mathcal{F},\mathcal{G}$) measurable.
\end{prop}
\begin{proof}
Since the function f is continuous, then if V be an open set in (Y,$\mathcal{T}_y$) then $f^{-1}(V)$ is also open in the topological space (X,$\mathcal{T}_x$). Every open set in (X,$\mathcal{T}_x$) and (Y,$\mathcal{T}_y$) is an element of the Borel $\sigma$-algebras $\mathcal{F}\:and\:\mathcal{G}$ respectively. Thus $V\in \mathcal{G}$ and as the function f is continuous, $f^{-1}(V) \in \mathcal{F}$.This condition is true for all open sets in (X,$\mathcal{T}_x$) and (Y,$\mathcal{T}_y$) as f is continuous. Thus the function f is measurable.
\end{proof}
\begin{prop}
Let f be function which is defined as f:X$\rightarrow \Real$.Then, f is measurable iff $\{x\in X\:\mid f(x)\leq q\}\:\in\mathcal{F}\:\forall\:q\in\mathbb{Q}$.
\end{prop}
\begin{proof}
\textbf{Proof of the if part:} In this case, we will assume that the function f is measurable. Now the interval $(-\infty,a]$ is an element of $\mathcal{B}_{\Real}$ where $a\in\Real$.Now $\mathbb{Q}\subseteq \mathbb{R}$. Hence the interval $(-\infty,q]$ , where $q\in\mathbb{Q}$, is an element of the Borel-$\sigma$-algebra on $\Real$. So if x$\in X$ be such an element,that f(x)$\leq q$,then, f(x)$\in (-\infty,q] \in \mathcal{B}_{\Real}$. Since f is measurable, then $f^{-1}(-\infty,q] \in \mathcal{F}$. Hence if f is measurable, then $\{x\in X\:\mid f(x)\leq q\}\:\in\mathcal{F}\:\forall\:q\in\mathbb{Q}$.\newline
\textbf{Proof of the only if part:} In this case, for an arbitrary element x$\in X$ such that $\{x\in X\:\mid f(x)\leq q\}\:\in\mathcal{F}\:\forall\:q\in\mathbb{Q}$. We will prove that f is measurable. Let a be an element of the real number line, we write, $a\in \Real$. The open interval $(-\infty,a)$ can be written as $(-\infty,a)=\bigcup_{q<a}-(\infty,q]$ Thus we can write, $f^{-1}(-\infty,a)=f^{-1}(\bigcup_{q<a}-(\infty,q])$.Now the set $f^{-1}(\bigcup_{q<a}-(\infty,q])$ is equal to $\bigcup_{q<a}f^{-1}(\infty,q]$, This fact has been proved in \textbf{Proposition 2.3}. The set of rational numbers is countable, hence the set $f^{-1}(-\infty,a)\subseteq X$ and it can be written as a countable union of the elements of $\mathcal{F}$. Thus the set $f^{-1}(-\infty,a) \in \mathcal{F}$ and so f is measurable.
\end{proof}
\begin{prop}
\textbf{Composition of Measurable Maps} Let (X,$\mathcal{F}$),(Y,$\mathcal{G}$) and (Y,$\mathcal{H}$) be measurable spaces and let f and g be functions which are defined as $f:X\rightarrow Y$ and $g:Y \rightarrow Z$ be measurable functions. Then h=$f\circ g$ is $(\mathcal{F},\mathcal{H})$ measurable.
\end{prop}
\begin{proof}
By definition, the functions f and g are measurable. So, $f^{-1}(B)\in \mathcal{F}$ $\forall\:B\in\mathcal{G}$ and $f^{-1}(C)\in \mathcal{G}$ $\forall\:C\in\mathcal{H}$. Now,h is a function from the set X to the set Z. By definition, h is represented as h=$f\circ g$. So we can write $h^{-1}=g^{-1}\circ h^{-1}$.Let us consider a set $K\subseteq Z$ such that $K\in \mathcal{H}$. So, from the definitions of the measurable mappings f and g, it is seen that$h^{-1}(K) \in \mathcal{F}$. Hence the function h which is represented as composition of the 2 measurable maps f and g, is measurable.
\end{proof}
\begin{cor}
\textbf{Composition with a Continuous Map} Let $(X,\mathcal{F}$) be a measurable space,(Y,$\mathcal{T}_y$) be a topological space and $\mathcal{G}$ be the Borel $\sigma$-algebra on Y.Let g:$Y\rightarrow \Real$ be a continuous function.Then the map $g\circ f$ is Borel measurable for each measurable function f:$X\rightarrow Y$.
\end{cor}
\begin{proof}
Let us define a function h as $h=g\circ f$. So we can write $h^{-1}=f^{-1}\circ g^{-1}$. By definition f is a measurable function on ($\mathcal{F},\mathcal{G}$) and g is a .continuous map from Y to $\Real$.Let P be an open set on $\Real$. Thus, P is a member of the Borel-$\sigma$-algbera on $\Real$. Since the map g is continuous, then $g^{-1}(P)\in\mathcal{T}_y$. Now as per definition, $\mathcal{G}$ is the Borel-$\sigma$-algbera on (Y,$\mathcal{T}_y$). Thus $g^{-1}(P)\in\mathcal{G}$.Again as f is a measurable function, then $f{-1}\{g^{-1}(P)\} \in \mathcal{F}$.Thus $h^{-1}(P)\in\mathcal{F}$, where P is any open set in $\Real$.Hence the map $g\circ f$ is Borel measurable for each measurable function $f:X\rightarrow Y$.
\end{proof}
\end{document}