-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_library_comparison.py
71 lines (60 loc) · 2.08 KB
/
image_library_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import cv2
import numpy as np
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import VGG16
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
# Define the paths to the two image libraries
library1_path = 'path/to/library1'
library2_path = 'path/to/library2'
# Data preprocessing
data_generator = ImageDataGenerator(rescale=1./255, validation_split=0.2)
train_generator = data_generator.flow_from_directory(
directory='path/to/combined_library',
target_size=(224, 224),
batch_size=32,
class_mode='binary',
subset='training'
)
validation_generator = data_generator.flow_from_directory(
directory='path/to/combined_library',
target_size=(224, 224),
batch_size=32,
class_mode='binary',
subset='validation'
)
# Build the model
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
model = Sequential()
model.add(base_model)
model.add(GlobalAveragePooling2D())
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy'])
# Train the model
epochs = 20
steps_per_epoch = train_generator.samples // 32
validation_steps = validation_generator.samples // 32
model.fit(
train_generator,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
validation_data=validation_generator,
validation_steps=validation_steps
)
# Function to predict which library an input image belongs to
def predict_library(input_image_path):
img = cv2.imread(input_image_path)
img = cv2.resize(img, (224, 224))
img = np.expand_dims(img, axis=0)
img = img / 255.0
prediction = model.predict(img)[0][0]
if prediction > 0.5:
return 'Library 2', prediction
else:
return 'Library 1', 1 - prediction
# Example usage
input_image_path = 'path/to/input_image.jpg'
library, probability = predict_library(input_image_path)
print(f"The input image is closer to {library} with probability {probability:.2f}")