diff --git a/vayu/googleMaps.py b/vayu/googleMaps.py
index 4d9a694..22474b8 100644
--- a/vayu/googleMaps.py
+++ b/vayu/googleMaps.py
@@ -15,9 +15,11 @@ def googleMaps(df, lat, long, pollutant, dataLoc):
long: str
Name of column in df of where longitude points are
pollutant: str
- Name of pollutant
- dataLoc: str
- Name of df column where pollutanat values are stored
+ Name of pollutant where values of that pollutant is stored.
+ date: str
+ visualizing the pollutant of a specific date.
+ markersize: int
+ The int by which the value of pollutant will be multiplied.
"""
import folium
@@ -26,56 +28,30 @@ def googleMaps(df, lat, long, pollutant, dataLoc):
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
-
- latitude = 37.0902
- longitude = -95.7129
- Arithmetic_Mean_map = folium.Map(location=[latitude, longitude], zoom_start=4)
+
+ def googleMaps(df, lat, long, pollutant, date, markersize):
+ df1=df
+ print(date)
+ df1=df[df['date']==date]
+ print(df1)
+
# =============================================================================
# df = pd.read_csv('interpolData.csv')
# =============================================================================
- some_value = pollutant
- df = df.loc[df["Parameter Name"] == some_value]
-
- some_value = "2018-05-07"
- df = df.loc[df["Date Local"] == some_value]
-
- df = df.sample(frac=1)
+ lat= df1[lat].values[0]
+ long=df1[long].values[0]
+ my_map4 = folium.Map(location = [lat, long], zoom_start = 10)
- # df_train, df_test = train_test_split(df, test_size=0.2)
- df["Arithmetic Mean Q"] = pd.qcut(df[dataLoc], 4, labels=False)
- colordict = {0: "lightblue", 1: "lightgreen", 2: "orange", 3: "red"}
+ for lat,long,pol,st in zip(df['latitude'],df['longitude'],df[pollutant],df['station']):
+
+ folium.CircleMarker([lat, long],radius=markersize * pol, popup=(str(st).capitalize()+"
"+ str(round(pol, 3))), fill=True, fill_opacity=0.7, color = 'red').add_to(my_map4)
- for lat, lon, Arithmetic_Mean_Q, Arithmetic_Mean, city, AQI in zip(
- df[lat],
- df[long],
- df["Arithmetic Mean Q"],
- df[dataLoc],
- df["City Name"],
- df["AQI"],
- ):
- folium.CircleMarker(
- [lat, lon],
- radius=0.15 * AQI,
- popup=(
- "City: "
- + str(city).capitalize()
- + "
"
- #'Bike score: ' + str(bike) + '
'
- "Arithmetic_Mean level: "
- + str(Arithmetic_Mean)
- + "%"
- ),
- color="b",
- key_on=Arithmetic_Mean_Q,
- threshold_scale=[0, 1, 2, 3],
- fill_color=colordict[Arithmetic_Mean_Q],
- fill=True,
- fill_opacity=0.7,
- ).add_to(Arithmetic_Mean_map)
- Arithmetic_Mean_map.save("mymap.html")
+ my_map4.save("googleMaps.html")
+ print('your map has been saved')
+#Example
# df = pd.read_csv('interpolData.csv')
# googleMaps(df,'Latitude','Longitude','Ozone','Arithmetic Mean')