diff --git a/vayu/googleMaps.py b/vayu/googleMaps.py index 4d9a694..22474b8 100644 --- a/vayu/googleMaps.py +++ b/vayu/googleMaps.py @@ -15,9 +15,11 @@ def googleMaps(df, lat, long, pollutant, dataLoc): long: str Name of column in df of where longitude points are pollutant: str - Name of pollutant - dataLoc: str - Name of df column where pollutanat values are stored + Name of pollutant where values of that pollutant is stored. + date: str + visualizing the pollutant of a specific date. + markersize: int + The int by which the value of pollutant will be multiplied. """ import folium @@ -26,56 +28,30 @@ def googleMaps(df, lat, long, pollutant, dataLoc): import matplotlib.pyplot as plt import numpy as np import pandas as pd - - latitude = 37.0902 - longitude = -95.7129 - Arithmetic_Mean_map = folium.Map(location=[latitude, longitude], zoom_start=4) + + def googleMaps(df, lat, long, pollutant, date, markersize): + df1=df + print(date) + df1=df[df['date']==date] + print(df1) + # ============================================================================= # df = pd.read_csv('interpolData.csv') # ============================================================================= - some_value = pollutant - df = df.loc[df["Parameter Name"] == some_value] - - some_value = "2018-05-07" - df = df.loc[df["Date Local"] == some_value] - - df = df.sample(frac=1) + lat= df1[lat].values[0] + long=df1[long].values[0] + my_map4 = folium.Map(location = [lat, long], zoom_start = 10) - # df_train, df_test = train_test_split(df, test_size=0.2) - df["Arithmetic Mean Q"] = pd.qcut(df[dataLoc], 4, labels=False) - colordict = {0: "lightblue", 1: "lightgreen", 2: "orange", 3: "red"} + for lat,long,pol,st in zip(df['latitude'],df['longitude'],df[pollutant],df['station']): + + folium.CircleMarker([lat, long],radius=markersize * pol, popup=(str(st).capitalize()+"
"+ str(round(pol, 3))), fill=True, fill_opacity=0.7, color = 'red').add_to(my_map4) - for lat, lon, Arithmetic_Mean_Q, Arithmetic_Mean, city, AQI in zip( - df[lat], - df[long], - df["Arithmetic Mean Q"], - df[dataLoc], - df["City Name"], - df["AQI"], - ): - folium.CircleMarker( - [lat, lon], - radius=0.15 * AQI, - popup=( - "City: " - + str(city).capitalize() - + "
" - #'Bike score: ' + str(bike) + '
' - "Arithmetic_Mean level: " - + str(Arithmetic_Mean) - + "%" - ), - color="b", - key_on=Arithmetic_Mean_Q, - threshold_scale=[0, 1, 2, 3], - fill_color=colordict[Arithmetic_Mean_Q], - fill=True, - fill_opacity=0.7, - ).add_to(Arithmetic_Mean_map) - Arithmetic_Mean_map.save("mymap.html") + my_map4.save("googleMaps.html") + print('your map has been saved') +#Example # df = pd.read_csv('interpolData.csv') # googleMaps(df,'Latitude','Longitude','Ozone','Arithmetic Mean')