-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProblem1.agda
307 lines (267 loc) · 20.7 KB
/
Problem1.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
module Problem1 where
{-
If we list all the natural numbers below 10 that are multiples of 3 or
5, we get 3, 5, 6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below 1000.
-}
open import Data.Nat
open import Data.Nat.Divisibility
open import Data.Nat.DivMod
open import Data.Nat.Properties
open import Data.List
open import Data.Sum
open import Function.Nary.NonDependent using (congₙ)
open import Relation.Unary.Properties
open import Relation.Binary.PropositionalEquality
problem′ : ℕ → ℕ
problem′ n = sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo n))
example : ℕ
example = problem′ 10
example-correct : example ≡ 23
example-correct = refl
-- this is actually quick enough but I'm sure we can do better
problem : ℕ
problem = problem′ 1000
module Lemmas where
import Agda.Builtin.Nat
open import Algebra.Definitions
open import Data.Bool using (true; false)
open import Data.Empty
open import Data.List.Properties
open import Data.Nat.LCM
open import Relation.Nullary
open import Relation.Unary
-- first definition of triangle numbers. This is easiest to work with
triangle : ℕ → ℕ
triangle zero = zero
triangle n@(suc x) = n + triangle x
-- second definition of triangle numbers. This looks pretty but sadly ⌊_/2⌋
-- is O(n) so this works out pretty slow in practice
triangle′ : ℕ → ℕ
triangle′ n = ⌊ n * suc n /2⌋
-- Identity to do with adding to half something
+-⌊n/2⌋ : ∀ m n → m + ⌊ n /2⌋ ≡ ⌊ 2 * m + n /2⌋
+-⌊n/2⌋ zero n = refl
+-⌊n/2⌋ (suc m) n = begin
suc (m + ⌊ n /2⌋) ≡⟨ cong suc (+-⌊n/2⌋ m n) ⟩
suc ⌊ 2 * m + n /2⌋ ≡⟨ cong (λ x → suc ⌊ m + x + n /2⌋) (+-identityʳ m) ⟩
⌊ suc (suc m + m) + n /2⌋ ≡˘⟨ cong (λ x → ⌊ suc x + n /2⌋) (+-suc m m) ⟩
⌊ suc (m + suc m + n) /2⌋ ≡˘⟨ cong (λ x → ⌊ suc (m + suc x + n) /2⌋) (+-identityʳ m) ⟩
⌊ 2 * suc m + n /2⌋ ∎
where
open ≡-Reasoning
-- The first two definitions of triangle numbers match!
triangle≗triangle′ : triangle ≗ triangle′
triangle≗triangle′ zero = refl
triangle≗triangle′ (suc x) = begin
triangle (suc x) ≡⟨ cong (suc x +_) (triangle≗triangle′ x) ⟩
suc x + ⌊ x * suc x /2⌋ ≡⟨ +-⌊n/2⌋ (suc x) (x * suc x) ⟩
⌊ 2 * suc x + x * suc x /2⌋ ≡˘⟨ cong ⌊_/2⌋ (*-distribʳ-+ (suc x) 2 x) ⟩
⌊ (2 + x) * suc x /2⌋ ≡⟨ cong ⌊_/2⌋ (*-comm (2 + x) _) ⟩
triangle′ (suc x) ∎
where
open ≡-Reasoning
-- the third and final definition of triangle numbers
-- This uses builtin division under the hood which gets compiled to proper
-- division operators (I think ultimately GMP integer division) so it's fast
triangle″ : ℕ → ℕ
triangle″ n = n * suc n / 2
-- halfing is the same as dividing by 2, as you might expect
//2 : ∀ n → ⌊ n /2⌋ ≡ n / 2
//2 zero = refl
//2 (suc zero) = refl
//2 (suc (suc n)) = begin
suc ⌊ n /2⌋ ≡⟨ cong suc (//2 n) ⟩
suc (n / 2) ≡˘⟨ +-distrib-/ 2 n (m%n<n n 1) ⟩
suc (suc n) / 2 ∎
where
open ≡-Reasoning
-- the second and third definitions of triangle numbers also match!
triangle′≗triangle″ : triangle′ ≗ triangle″
triangle′≗triangle″ n = //2 _
-- and so the first and thirdd definitions match
triangle≗triangle″ : triangle ≗ triangle″
triangle≗triangle″ x = trans (triangle≗triangle′ x) (triangle′≗triangle″ x)
-- if we're almost done dividing, we're not going to change the answer
foo : ∀ {k m n j} → n ≤ j → Agda.Builtin.Nat.div-helper k m n j ≡ k
foo z≤n = refl
foo (s≤s p) = foo p
-- dividing a small number by a big one gets 0
m<n⇒m/n≡0 : ∀ {m n n≢0} → m < n → (m / n) {n≢0} ≡ 0
m<n⇒m/n≡0 (s≤s p) = foo p
-- if i divides both m and n then it divides their difference
∣m∣n⇒∣m∸n : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m ∸ n
∣m∣n⇒∣m∸n (divides p refl) (divides q refl) = divides (p ∸ q) (sym (*-distribʳ-∸ _ p q))
lemma : {x d : ℕ} → suc d ∣ suc x → suc x / suc d ≡ suc (x / suc d)
lemma {x} {zero} p = begin
suc x / 1 ≡⟨ n/1≡n (suc x) ⟩
suc x ≡˘⟨ cong suc (n/1≡n x) ⟩
suc (x / 1) ∎
where
open ≡-Reasoning
lemma {x} {suc d} (divides (suc q) p) = begin
suc x / suc (suc d) ≡⟨ cong (_/ suc (suc d)) p ⟩
suc q * suc (suc d) / suc (suc d) ≡⟨ m*n/n≡m (suc q) (suc (suc d)) ⟩
suc q ≡˘⟨ cong suc (m*n/n≡m q (suc (suc d))) ⟩
suc (q * suc (suc d) / suc (suc d)) ≡⟨⟩
suc ((suc q ∸ 1) * suc (suc d) / suc (suc d)) ≡⟨ cong (λ x → suc (x / suc (suc d))) (*-distribʳ-∸ (suc (suc d)) (suc q) 1) ⟩
suc ((suc q * suc (suc d) ∸ 1 * suc (suc d)) / suc (suc d)) ≡⟨ cong (λ x → suc ((suc q * suc (suc d) ∸ x) / suc (suc d))) (*-identityˡ (suc (suc d))) ⟩
suc ((suc q * suc (suc d) ∸ suc (suc d)) / suc (suc d)) ≡˘⟨ cong (λ x → suc ((x ∸ suc (suc d)) / suc (suc d))) p ⟩
suc (0 + (x ∸ suc d) / suc (suc d)) ≡˘⟨ cong (λ n → suc (n + (x ∸ suc d) / suc (suc d))) (m<n⇒m/n≡0 (n<1+n (suc d))) ⟩
suc (suc d / suc (suc d) + (x ∸ suc d) / suc (suc d)) ≡˘⟨ cong suc (+-distrib-/-∣ʳ {suc d} (x ∸ suc d) (∣m∣n⇒∣m∸n (divides (suc q) p) ∣-refl)) ⟩
suc ((suc d + (x ∸ suc d)) / suc (suc d)) ≡˘⟨ cong (λ x → suc (x / suc (suc d))) (+-∸-assoc (suc d) (+-cancelˡ-≤ 1 (≤-trans (≤-trans (≤-reflexive (sym (*-identityˡ (suc (suc d))))) (*-monoˡ-≤ (suc (suc d)) (s≤s {n = q} z≤n))) (≤-reflexive (sym p)))))⟩
suc (((suc d + x) ∸ suc d) / suc (suc d)) ≡⟨ cong (λ x → suc (x / suc (suc d))) (m+n∸m≡n (suc d) x) ⟩
suc (x / suc (suc d)) ∎
where
open ≡-Reasoning
bar : ∀ {x d} → ¬ (suc (suc d) ∣ suc x) → x % suc (suc d) ≤ d
bar {x} {d} ¬p with suc x % suc (suc d) | inspect (λ a → a % suc (suc d)) (suc x)
... | zero | [ p ] = ⊥-elim (¬p (m%n≡0⇒n∣m (suc x) (suc d) p))
... | suc n | [ p ] = [1+m%d]≤1+n⇒[m%d]≤n x d (suc (suc d)) (≤-trans (s≤s z≤n) (≤-reflexive (sym p))) (+-cancelˡ-≤ 1 (m%n<n (suc x) (suc d)))
lemma₂ : {x d : ℕ} → ¬ (suc d ∣ suc x) → suc x / suc d ≡ x / suc d
lemma₂ {x} {zero} ¬p = ⊥-elim (¬p (1∣ suc x))
lemma₂ {x} {suc d} ¬p with suc x % suc (suc d) | inspect (λ a → a % suc (suc d)) (suc x)
... | zero | [ p ] = ⊥-elim (¬p (m%n≡0⇒n∣m _ _ p))
... | suc n | [ p ] = +-distrib-/ 1 x (+-monoʳ-≤ 2 (bar ¬p))
prop : ∀ d l → suc d * triangle (l / suc d) ≡ sum (filter (suc d ∣?_) (downFrom (suc l)))
prop d zero = *-zeroʳ d
prop d (suc l) with suc d ∣? suc l
... | true because ofʸ p = begin
suc d * triangle (suc l / suc d) ≡⟨ cong (λ x → suc d * triangle x) (lemma p) ⟩
suc d * triangle (suc (l / suc d)) ≡⟨ *-distribˡ-+ (suc d) (suc (l / suc d)) (triangle (l / suc d)) ⟩
suc d * (suc (l / suc d)) + suc d * triangle (l / suc d) ≡˘⟨ cong (λ x → suc d * x + suc d * triangle (l / suc d)) (lemma p) ⟩
suc d * (suc l / suc d) + suc d * triangle (l / suc d) ≡⟨ cong (_+ suc d * triangle (l / suc d)) (m*[n/m]≡n p) ⟩
suc l + suc d * triangle (l / suc d) ≡⟨ cong (suc l +_) (prop d l) ⟩
sum (suc l ∷ filter (suc d ∣?_) (downFrom (suc l))) ≡˘⟨ cong sum (filter-accept (suc d ∣?_) p) ⟩
sum (filter (suc d ∣?_) (suc l ∷ downFrom (suc l))) ∎
where
open ≡-Reasoning
... | false because ofⁿ ¬p = begin
suc d * triangle (suc l / suc d) ≡⟨ cong (λ n → suc d * triangle n) (lemma₂ ¬p) ⟩
suc d * triangle (l / suc d) ≡⟨ prop d l ⟩
sum (filter (suc d ∣?_) (downFrom (suc l))) ≡˘⟨ cong sum (filter-reject (suc d ∣?_) ¬p) ⟩
sum (filter (suc d ∣?_) (suc l ∷ downFrom (suc l))) ∎
where
open ≡-Reasoning
notLemmaAux : ∀ {A : Set} (∙ : A → A → A) (ε : A) (comm : Commutative _≡_ ∙) (assoc : Associative _≡_ ∙) (n : A) (ns : List A) → foldr ∙ ε (n ∷ ns) ≡ foldr ∙ (∙ n ε) ns
notLemmaAux _∙_ ε comm assoc n [] = refl
notLemmaAux _∙_ ε comm assoc n (m ∷ ns) = begin
n ∙ (m ∙ foldr _∙_ ε ns) ≡˘⟨ assoc n m _ ⟩
(n ∙ m) ∙ foldr _∙_ ε ns ≡⟨ cong (_∙ foldr _∙_ ε ns) (comm n m) ⟩
(m ∙ n) ∙ foldr _∙_ ε ns ≡⟨ assoc m n _ ⟩
m ∙ (n ∙ foldr _∙_ ε ns) ≡⟨ cong (m ∙_) (notLemmaAux _∙_ ε comm assoc n ns) ⟩
m ∙ foldr _∙_ (n ∙ ε) ns ∎
where
open ≡-Reasoning
foldr-downFrom-insert : ∀ {A : Set} (_∙_ : A → A → A) (ε : A) (f : ℕ → A) (n : ℕ) → foldr _∙_ (f zero ∙ ε) (applyDownFrom (λ x → f (suc x)) n) ≡ foldr _∙_ ε (applyDownFrom f (suc n))
foldr-downFrom-insert _∙_ ε f zero = refl
foldr-downFrom-insert _∙_ ε f (suc n) = cong (f (suc n) ∙_) (foldr-downFrom-insert _∙_ ε f n)
notLemmaFilterAuxⁿ : ∀ {A : Set} (∙ : A → A → A) (ε : A) {p} {P : Pred A p} (P? : Decidable P) (f : ℕ → A) (n : ℕ) → ¬ P (f 0) → foldr ∙ ε (filter P? (applyDownFrom (λ x → f (suc x)) n)) ≡ foldr ∙ ε (filter P? (applyDownFrom f (suc n)))
notLemmaFilterAuxⁿ ∙ ε P? f zero ¬p = cong (foldr ∙ ε) (sym (filter-reject P? ¬p))
notLemmaFilterAuxⁿ ∙ ε P? f (suc n) ¬p with does (P? (f (suc n)))
... | false = notLemmaFilterAuxⁿ ∙ ε P? f n ¬p
... | true = cong (∙ (f (suc n))) (notLemmaFilterAuxⁿ ∙ ε P? f n ¬p)
foldr-filter-downFrom-insert : ∀ {A : Set} (_∙_ : A → A → A) (ε : A) {p} {P : Pred A p} (P? : Decidable P) (f : ℕ → A) (n : ℕ) → P (f zero) → foldr _∙_ (f zero ∙ ε) (filter P? (applyDownFrom (λ x → f (suc x)) n)) ≡ foldr _∙_ ε (filter P? (applyDownFrom f (suc n)))
foldr-filter-downFrom-insert _∙_ ε P? f zero p = begin
f zero ∙ ε ≡˘⟨ cong (foldr _∙_ ε) (filter-accept P? p) ⟩
foldr _∙_ ε (filter P? (f zero ∷ [])) ∎
where
open ≡-Reasoning
foldr-filter-downFrom-insert _∙_ ε P? f (suc n) p with does (P? (f (suc n)))
... | true = cong (f (suc n) ∙_) (foldr-filter-downFrom-insert _∙_ ε P? f n p)
... | false = foldr-filter-downFrom-insert _∙_ ε P? f n p
notLemmaFilter : ∀ {A : Set} (∙ : A → A → A) (ε : A) (comm : Commutative _≡_ ∙) (assoc : Associative _≡_ ∙) {p} {P : Pred A p} (P? : Decidable P) (f : ℕ → A) (n : ℕ) → foldr ∙ ε (filter P? (applyUpTo f n)) ≡ foldr ∙ ε (filter P? (applyDownFrom f n))
notLemmaFilter ∙ ε comm assoc P? f zero = refl
notLemmaFilter ∙ ε comm assoc P? f (suc n) with P? (f zero)
... | false because ofⁿ ¬p = begin
foldr ∙ ε (filter P? (applyUpTo (λ x → f (suc x)) n)) ≡⟨ notLemmaFilter ∙ ε comm assoc P? (λ x → f (suc x)) n ⟩
foldr ∙ ε (filter P? (applyDownFrom (λ x → f (suc x)) n)) ≡⟨ notLemmaFilterAuxⁿ ∙ ε P? f n ¬p ⟩
foldr ∙ ε (filter P? (applyDownFrom f (suc n))) ∎
where
open ≡-Reasoning
... | true because ofʸ p = begin
∙ (f zero) (foldr ∙ ε (filter P? (applyUpTo (λ x → f (suc x)) n))) ≡⟨ notLemmaAux ∙ ε comm assoc (f zero) (filter P? (applyUpTo (λ x → f (suc x)) n)) ⟩
foldr ∙ (∙ (f zero) (ε)) (filter P? (applyUpTo (λ x → f (suc x)) n)) ≡⟨ notLemmaFilter ∙ (∙ (f zero) ε) comm assoc P? (λ x → f (suc x)) n ⟩
foldr ∙ (∙ (f zero) (ε)) (filter P? (applyDownFrom (λ x → f (suc x)) n)) ≡⟨ foldr-filter-downFrom-insert ∙ ε P? f n p ⟩
foldr ∙ ε (filter P? (applyDownFrom f (suc n))) ∎
where
open ≡-Reasoning
prop′ : ∀ d l → suc d * triangle″ (l / suc d) ≡ sum (filter (suc d ∣?_) (upTo (suc l)))
prop′ d l = begin
suc d * triangle″ (l / suc d) ≡˘⟨ cong (λ x → suc d * x) (triangle≗triangle″ (l / suc d)) ⟩
suc d * triangle (l / suc d) ≡⟨ prop d l ⟩
sum (filter (suc d ∣?_) (downFrom (suc l))) ≡˘⟨ notLemmaFilter _+_ 0 +-comm +-assoc (suc d ∣?_) (λ x → x) (suc l) ⟩
sum (filter (suc d ∣?_) (upTo (suc l))) ∎
where
open ≡-Reasoning
recombine-divisors : ∀ d d′ xs → sum (filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs) ≡ sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs)
recombine-divisors d d′ [] = refl
recombine-divisors d d′ (x ∷ xs) with suc d ∣? x | suc d′ ∣? x
... | .true because ofʸ p | .true because ofʸ q = begin
sum (filter (suc d ∣?_) (x ∷ xs)) + sum (filter (suc d′ ∣?_) (x ∷ xs)) ≡⟨ cong₂ (λ x y → sum x + sum y) (filter-accept (suc d ∣?_) p) (filter-accept (suc d′ ∣?_) q) ⟩
sum (x ∷ filter (suc d ∣?_) xs) + sum (x ∷ filter (suc d′ ∣?_) xs) ≡⟨⟩
(x + sum (filter (suc d ∣?_) xs)) + (x + sum (filter (suc d′ ∣?_) xs)) ≡⟨ +-assoc x (sum (filter (suc d ∣?_) xs)) _ ⟩
x + (sum (filter (suc d ∣?_) xs) + (x + sum (filter (suc d′ ∣?_) xs))) ≡˘⟨ cong (x +_) (+-assoc (sum (filter (suc d ∣?_) xs)) x _) ⟩
x + ((sum (filter (suc d ∣?_) xs) + x) + sum (filter (suc d′ ∣?_) xs)) ≡⟨ cong (λ n → x + (n + sum (filter (suc d′ ∣?_) xs))) (+-comm _ x) ⟩
x + ((x + sum (filter (suc d ∣?_) xs)) + sum (filter (suc d′ ∣?_) xs)) ≡⟨ cong (x +_) (+-assoc x (sum (filter (suc d ∣?_) xs)) _) ⟩
x + (x + (sum (filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs))) ≡˘⟨ +-assoc x x _ ⟩
(x + x) + (sum (filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs)) ≡⟨ cong ((x + x) +_) (recombine-divisors d d′ xs) ⟩
(x + x) + (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs)) ≡⟨ +-assoc x x _ ⟩
x + (x + (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs))) ≡˘⟨ cong (x +_) (+-assoc x (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) _) ⟩
x + ((x + sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs)) ≡⟨ cong (λ n → x + (n + sum (filter (lcm (suc d) (suc d′) ∣?_) xs))) (+-comm x _) ⟩
x + ((sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + x) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs)) ≡⟨ cong (x +_) (+-assoc (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) x _) ⟩
x + (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + (x + sum (filter (lcm (suc d) (suc d′) ∣?_) xs))) ≡˘⟨ +-assoc x (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) _ ⟩
(x + sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) + (x + sum (filter (lcm (suc d) (suc d′) ∣?_) xs)) ≡⟨⟩
sum (x ∷ filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (x ∷ filter (lcm (suc d) (suc d′) ∣?_) xs) ≡˘⟨ cong₂ (λ x y → sum x + sum y) (filter-accept ((suc d ∣?_) ∪? (suc d′ ∣?_)) (inj₁ p)) (filter-accept (lcm (suc d) (suc d′) ∣?_) (lcm-least p q))⟩
sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) (x ∷ xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) (x ∷ xs)) ∎
where
open ≡-Reasoning
... | .true because ofʸ p | .false because ofⁿ ¬q = begin
sum (filter (suc d ∣?_) (x ∷ xs)) + sum (filter (suc d′ ∣?_) (x ∷ xs)) ≡⟨ cong₂ (λ x y → sum x + sum y) (filter-accept (suc d ∣?_) p) (filter-reject (suc d′ ∣?_) ¬q) ⟩
sum (x ∷ filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs) ≡⟨ +-assoc x (sum (filter (suc d ∣?_) xs)) _ ⟩
x + (sum (filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs)) ≡⟨ cong (x +_) (recombine-divisors d d′ xs) ⟩
x + (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs)) ≡˘⟨ +-assoc x (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) _ ⟩
(x + sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs) ≡˘⟨ cong₂ (λ x y → sum x + sum y) (filter-accept ((suc d ∣?_) ∪? (suc d′ ∣?_)) (inj₁ p)) (filter-reject (lcm (suc d) (suc d′) ∣?_) (λ r → ¬q (∣-trans (n∣lcm[m,n] (suc d) (suc d′)) r))) ⟩
sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) (x ∷ xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) (x ∷ xs)) ∎
where
open ≡-Reasoning
... | .false because ofⁿ ¬p | .true because ofʸ q = begin
sum (filter (suc d ∣?_) (x ∷ xs)) + sum (filter (suc d′ ∣?_) (x ∷ xs)) ≡⟨ cong₂ (λ x y → sum x + sum y) (filter-reject (suc d ∣?_) ¬p) (filter-accept (suc d′ ∣?_) q) ⟩
sum (filter (suc d ∣?_) xs) + sum (x ∷ filter (suc d′ ∣?_) xs) ≡˘⟨ +-assoc (sum (filter (suc d ∣?_) xs)) x _ ⟩
(sum (filter (suc d ∣?_) xs) + x) + sum (filter (suc d′ ∣?_) xs) ≡⟨ cong (_+ sum (filter (suc d′ ∣?_) xs)) (+-comm _ x) ⟩
(x + sum (filter (suc d ∣?_) xs)) + sum (filter (suc d′ ∣?_) xs) ≡⟨ +-assoc x (sum (filter (suc d ∣?_) xs)) _ ⟩
x + (sum (filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs)) ≡⟨ cong (x +_) (recombine-divisors d d′ xs) ⟩
x + (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs)) ≡˘⟨ +-assoc x (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) _ ⟩
(x + sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs) ≡˘⟨ cong₂ (λ x y → sum x + sum y) (filter-accept ((suc d ∣?_) ∪? (suc d′ ∣?_)) (inj₂ q)) (filter-reject (lcm (suc d) (suc d′) ∣?_) λ r → ¬p (∣-trans (m∣lcm[m,n] (suc d) (suc d′)) r)) ⟩
sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) (x ∷ xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) (x ∷ xs)) ∎
where
open ≡-Reasoning
... | .false because ofⁿ ¬p | .false because ofⁿ ¬q = begin
sum (filter (suc d ∣?_) (x ∷ xs)) + sum (filter (suc d′ ∣?_) (x ∷ xs)) ≡⟨ cong₂ (λ x y → sum x + sum y) (filter-reject (suc d ∣?_) ¬p) (filter-reject (suc d′ ∣?_) ¬q) ⟩
sum (filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs) ≡⟨ recombine-divisors d d′ xs ⟩
sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs) ≡˘⟨ cong₂ (λ x y → sum x + sum y) (filter-reject ((suc d ∣?_) ∪? (suc d′ ∣?_)) [ ¬p , ¬q ]) (filter-reject (lcm (suc d) (suc d′) ∣?_) (λ r → ¬p (∣-trans (m∣lcm[m,n] (suc d) (suc d′)) r))) ⟩
sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) (x ∷ xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) (x ∷ xs)) ∎
where
open ≡-Reasoning
solution′ : ℕ → ℕ
solution′ zero = zero
solution′ (suc n) = 3 * Lemmas.triangle″ (n / 3) + 5 * Lemmas.triangle″ (n / 5) ∸ 15 * Lemmas.triangle″ (n / 15)
solution-correct : problem′ ≗ solution′
solution-correct zero = refl
solution-correct (suc n) = begin
sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo (suc n))) ≡˘⟨ +-identityʳ _ ⟩
sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo (suc n))) + 0 ≡˘⟨ cong (sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo (suc n))) +_) (n∸n≡0 (sum (filter (15 ∣?_) (upTo (suc n))))) ⟩
sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo (suc n))) + (sum (filter (15 ∣?_) (upTo (suc n))) ∸ sum (filter (15 ∣?_) (upTo (suc n)))) ≡˘⟨ +-∸-assoc (sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo (suc n)))) {sum (filter (15 ∣?_) (upTo (suc n)))} ≤-refl ⟩
(sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo (suc n))) + sum (filter (15 ∣?_) (upTo (suc n)))) ∸ sum (filter (15 ∣?_) (upTo (suc n))) ≡˘⟨ cong (_∸ sum (filter (15 ∣?_) (upTo (suc n)))) (Lemmas.recombine-divisors 2 4 (upTo (suc n))) ⟩
(sum (filter (3 ∣?_) (upTo (suc n))) + sum (filter (5 ∣?_) (upTo (suc n)))) ∸ sum (filter (15 ∣?_) (upTo (suc n))) ≡˘⟨ congₙ 3 (λ x y z → x + y ∸ z) (Lemmas.prop′ 2 n) (Lemmas.prop′ 4 n) (Lemmas.prop′ 14 n) ⟩
(3 * Lemmas.triangle″ (n / 3) + 5 * Lemmas.triangle″ (n / 5)) ∸ 15 * Lemmas.triangle″ (n / 15) ∎
where
open ≡-Reasoning
solution : ℕ
solution = solution′ 1000
-- output the solution
open import Data.Nat.Show
open import IO
import IO.Primitive as Prim
main : Prim.IO _
main = run (putStrLn (show solution))