forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdepthNet.h
314 lines (266 loc) · 11.5 KB
/
depthNet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/*
* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __DEPTH_NET_H__
#define __DEPTH_NET_H__
#include "tensorNet.h"
#include "cudaColormap.h"
/**
* Name of default input blob for depthNet model.
* @ingroup depthNet
*/
#define DEPTHNET_DEFAULT_INPUT "input_0"
/**
* Name of default output blob for depthNet model.
* @ingroup depthNet
*/
#define DEPTHNET_DEFAULT_OUTPUT "output_0"
/**
* Command-line options able to be passed to depthNet::Create()
* @ingroup depthNet
*/
#define DEPTHNET_USAGE_STRING "depthNet arguments: \n" \
" --network NETWORK pre-trained model to load, one of the following:\n" \
" * monodepth-mobilenet\n" \
" * monodepth-resnet18\n" \
" * monodepth-resnet50\n" \
" --model MODEL path to custom model to load (onnx)\n" \
" --input_blob INPUT name of the input layer (default is '" DEPTHNET_DEFAULT_INPUT "')\n" \
" --output_blob OUTPUT name of the output layer (default is '" DEPTHNET_DEFAULT_OUTPUT "')\n" \
" --batch_size BATCH maximum batch size (default is 1)\n" \
" --profile enable layer profiling in TensorRT\n\n"
/**
* Mono depth estimation from monocular images, using TensorRT.
* @ingroup depthNet
*/
class depthNet : public tensorNet
{
public:
/**
* Network choice enumeration.
*/
enum NetworkType
{
CUSTOM, /**< Custom model provided by the user */
FCN_MOBILENET, /**< MobileNet backbone */
FCN_RESNET18, /**< ResNet-18 backbone */
FCN_RESNET50, /**< ResNet-50 backbone */
};
/**
* Visualization flags.
*/
enum VisualizationFlags
{
VISUALIZE_INPUT = (1 << 0), /**< Display the original input image */
VISUALIZE_DEPTH = (1 << 1), /**< Display the colorized depth field */
};
/**
* Parse a string of one of more VisualizationMode values.
* Valid strings are "depth" "input" "input|depth" "input,depth" ect.
*/
static uint32_t VisualizationFlagsFromStr( const char* str, uint32_t default_value=VISUALIZE_INPUT|VISUALIZE_DEPTH );
/**
* Parse a string to one of the built-in pretrained models.
* Valid names are "mobilenet", "resnet-18", or "resnet-50", ect.
* @returns one of the depthNet::NetworkType enums, or depthNet::CUSTOM on invalid string.
*/
static NetworkType NetworkTypeFromStr( const char* model_name );
/**
* Convert a NetworkType enum to a string.
*/
static const char* NetworkTypeToStr( NetworkType network );
/**
* Load a new network instance
*/
static depthNet* Create( NetworkType networkType=FCN_MOBILENET,
uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE,
precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true );
/**
* Load a new network instance
* @param model_path File path to the caffemodel
* @param mean_binary File path to the mean value binary proto (can be NULL)
* @param class_labels File path to list of class name labels
* @param input Name of the input layer blob.
* @param output Name of the output layer blob.
* @param maxBatchSize The maximum batch size that the network will support and be optimized for.
*/
static depthNet* Create( const char* model_path,
const char* input=DEPTHNET_DEFAULT_INPUT,
const char* output=DEPTHNET_DEFAULT_OUTPUT,
uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE,
precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true );
/**
* Load a custom network instance of a UFF model
* @param model_path File path to the UFF model
* @param input Name of the input layer blob.
* @param inputDims Dimensions of the input layer blob.
* @param output Name of the output layer blob containing the bounding boxes, ect.
* @param maxBatchSize The maximum batch size that the network will support and be optimized for.
*/
static depthNet* Create( const char* model_path, const char* input,
const Dims3& inputDims, const char* output,
uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE,
precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true );
/**
* Load a new network instance by parsing the command line.
*/
static depthNet* Create( int argc, char** argv );
/**
* Load a new network instance by parsing the command line.
*/
static depthNet* Create( const commandLine& cmdLine );
/**
* Usage string for command line arguments to Create()
*/
static inline const char* Usage() { return DEPTHNET_USAGE_STRING; }
/**
* Destroy
*/
virtual ~depthNet();
/**
* Compute the depth field from a monocular RGB/RGBA image.
* @note the raw depth field can be retrieved with GetDepthField().
*/
template<typename T> bool Process( T* image, uint32_t width, uint32_t height ) { return Process((void*)image, width, height, imageFormatFromType<T>()); }
/**
* Compute the depth field from a monocular RGB/RGBA image.
* @note the raw depth field can be retrieved with GetDepthField().
*/
bool Process( void* input, uint32_t width, uint32_t height, imageFormat format );
/**
* Process an RGB/RGBA image and map the depth image with the specified colormap.
* @note this function calls Process() followed by Visualize().
*/
template<typename T1, typename T2>
bool Process( T1* input, T2* output, uint32_t width, uint32_t height,
cudaColormapType colormap=COLORMAP_VIRIDIS_INVERTED,
cudaFilterMode filter=FILTER_LINEAR ) { return Process((void*)input, imageFormatFromType<T1>(), (void*)output, imageFormatFromType<T2>(), width, height, colormap, filter); }
/**
* Process an RGB/RGBA image and map the depth image with the specified colormap.
* @note this function calls Process() followed by Visualize().
*/
bool Process( void* input, imageFormat input_format,
void* output, imageFormat output_format,
uint32_t width, uint32_t height,
cudaColormapType colormap=COLORMAP_VIRIDIS_INVERTED,
cudaFilterMode filter=FILTER_LINEAR );
/**
* Process an RGB/RGBA image and map the depth image with the specified colormap.
* @note this function calls Process() followed by Visualize().
*/
template<typename T1, typename T2>
bool Process( T1* input, uint32_t input_width, uint32_t input_height,
T2* output, uint32_t output_width, uint32_t output_height,
cudaColormapType colormap=COLORMAP_DEFAULT,
cudaFilterMode filter=FILTER_LINEAR ) { return Process((void*)input, input_width, input_height, imageFormatFromType<T1>(), (void*)output, output_width, output_height, imageFormatFromType<T2>(), colormap, filter); }
/**
* Process an RGB/RGBA image and map the depth image with the specified colormap.
* @note this function calls Process() followed by Visualize().
*/
bool Process( void* input, uint32_t input_width, uint32_t input_height, imageFormat input_format,
void* output, uint32_t output_width, uint32_t output_height, imageFormat output_format,
cudaColormapType colormap=COLORMAP_DEFAULT,
cudaFilterMode filter=FILTER_LINEAR );
/**
* Visualize the raw depth field into a colorized RGB/RGBA depth map.
* @note Visualize() should only be called after Process()
*/
template<typename T>
bool Visualize( T* output, uint32_t width, uint32_t height,
cudaColormapType colormap=COLORMAP_DEFAULT,
cudaFilterMode filter=FILTER_LINEAR ) { return Visualize((void*)output, width, height, imageFormatFromType<T>(), colormap, filter); }
/**
* Visualize the raw depth field into a colorized RGB/RGBA depth map.
* @note Visualize() should only be called after Process()
*/
bool Visualize( void* output, uint32_t width, uint32_t height, imageFormat format,
cudaColormapType colormap=COLORMAP_DEFAULT,
cudaFilterMode filter=FILTER_LINEAR );
/**
* Return the raw depth field.
*/
inline float* GetDepthField() const { return mOutputs[0].CUDA; }
/**
* Return the width of the depth field.
*/
inline uint32_t GetDepthFieldWidth() const { return DIMS_W(mOutputs[0].dims); }
/**
* Return the height of the depth field
*/
inline uint32_t GetDepthFieldHeight() const { return DIMS_H(mOutputs[0].dims); }
/**
* Retrieve the network type (alexnet or googlenet)
*/
inline NetworkType GetNetworkType() const { return mNetworkType; }
/**
* Retrieve a string describing the network name.
*/
inline const char* GetNetworkName() const { return NetworkTypeToStr(mNetworkType); }
/**
* Extract and save the point cloud to a PCD file (depth only).
* @note SavePointCloud() should only be called after Process()
*/
bool SavePointCloud( const char* filename );
/**
* Extract and save the point cloud to a PCD file (depth + RGB).
* @note SavePointCloud() should only be called after Process()
*/
bool SavePointCloud( const char* filename, float* rgba, uint32_t width, uint32_t height );
/**
* Extract and save the point cloud to a PCD file (depth + RGB).
* @note SavePointCloud() should only be called after Process()
*/
bool SavePointCloud( const char* filename, float* rgba, uint32_t width, uint32_t height,
const float2& focalLength, const float2& principalPoint );
/**
* Extract and save the point cloud to a PCD file (depth + RGB).
* @note SavePointCloud() should only be called after Process()
*/
bool SavePointCloud( const char* filename, float* rgba, uint32_t width, uint32_t height,
const float intrinsicCalibration[3][3] );
/**
* Extract and save the point cloud to a PCD file (depth + RGB).
* @note SavePointCloud() should only be called after Process()
*/
bool SavePointCloud( const char* filename, float* rgba, uint32_t width, uint32_t height,
const char* intrinsicCalibrationPath );
protected:
depthNet();
bool allocHistogramBuffers();
bool histogramEqualization();
bool histogramEqualizationCUDA();
NetworkType mNetworkType;
int2* mDepthRange;
float* mDepthEqualized;
uint32_t* mHistogram;
float* mHistogramPDF;
float* mHistogramCDF;
uint32_t* mHistogramEDU;
/**< @internal */
#define DEPTH_FLOAT_TO_INT 1000000
/**< @internal */
#define DEPTH_HISTOGRAM_BINS 256
};
///@}
#endif