-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathtone.py
129 lines (106 loc) · 3.79 KB
/
tone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import cv2
import numpy as np
import math
from LDR import LDR
def transferTone(img):
ho = np.zeros( 256 )
po = np.zeros( 256 )
for i in range(256 ):
po[i] = np.sum(img == i)
po = po / np.sum(po)
#caculate original cumulative histogram
ho[0] = po[0]
for i in range(1,256):
ho[i] = ho[i - 1] + po[i]
#use parameter from paper.
omiga1 = 76
omiga2 = 22
omiga3 = 2
p1 = lambda x : (1 / 9.0) * np.exp(-(255 - x) / 9.0)
p2 = lambda x : (1.0 / (225 - 105)) * (x >= 105 and x <= 225)
p3 = lambda x : (1.0 / np.sqrt(2 * math.pi *11) ) * np.exp(-((x - 90) ** 2) / float((2 * (11 **2))))
p = lambda x : (omiga1 * p1(x) + omiga2 * p2(x) + omiga3 * p3(x)) * 0.01
prob = np.zeros(256)
total = 0
for i in range(256):
prob[i] = p(i)
total = total + prob[i]
prob = prob / total
#caculate new cumulative histogram
histo = np.zeros(256)
histo[0] = prob[0]
for i in range(1, 256):
histo[i] = histo[i - 1] + prob[i]
Iadjusted = np.zeros((img.shape[0], img.shape[1]))
for x in range(img.shape[0]):
for y in range(img.shape[1]):
histogram_value = ho[img[x,y]]
i = np.argmin(np.absolute(histo - histogram_value))
Iadjusted[x, y] = i
Iadjusted = np.uint8(Iadjusted)
cv2.imshow('adjust tone', Iadjusted)
cv2.waitKey(0)
J = Iadjusted
J = cv2.blur(Iadjusted, (3, 3))
cv2.imshow('blurred adjust tone', J)
cv2.waitKey(1)
return J
def LDR_single(img,n,output_path):
Interval = 250.0/n
img = np.float32(img)
img = np.uint8(img/Interval)
img = np.clip(img,0,n-1)
for i in range (n):
mask = (img-i == 0)
tone = np.uint8(i*Interval*mask + (1-mask)*255)
cv2.imwrite(output_path + "/tone{}.png".format(i),tone)
# cv2.imwrite("D:/ECCV2020/input/lilianjie/eeee.png",eeee)
return
def LDR_single_add(img,n,output_path):
Interval = 250.0/n
img = np.float32(img)
img = np.uint8(img/Interval)
img = np.clip(img,0,n-1)
# img = np.float32(img)
# eeee = img*0
mask_add = img*0
for i in range (n):
mask = (img-i == 0)
mask_add += mask
cv2.imwrite(output_path +"/mask/mask{}.png".format(i),np.uint8(mask_add*255))
tone = np.uint8((i+0.5)*Interval*mask_add + (1-mask_add)*255)
# cv2.imshow('tone{}'.format(i), tone)
# cv2.waitKey(0)
cv2.imwrite(output_path +"/mask/tone_cumulate{}.png".format(i),tone)
# cv2.imwrite("D:/ECCV2020/input/lilianjie/eeee.png",eeee)
return
# def LDR_single_add(img,n1,n2,output_path):
# Interval = 250.0/n1
# img = np.float32(img)
# img = np.uint8(img/Interval)
# # img = np.clip(img,0,n1-1)
# # img = np.float32(img)
# # eeee = img*0
# for i in range (n1):
# if i <n2:
# mask_add = (img-i == 0)
# else :
# mask_add = img*0
# for j in range(n2):
# mask = (img-i-j == 0)
# mask_add += mask
# cv2.imwrite(output_path +"/mask/mask{}.png".format(i),np.uint8(mask_add*255))
# tone = np.uint8((i)*Interval*mask_add + (1-mask_add)*255)
# # cv2.imshow('tone{}'.format(i), tone)
# # cv2.waitKey(0)
# cv2.imwrite(output_path +"/mask/tone_cumulate{}.png".format(i),tone)
# # cv2.imwrite("D:/ECCV2020/input/lilianjie/eeee.png",eeee)
# return
if __name__ == '__main__':
img_path = './input/jiangwen/MORPH_OPEN.png'
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
# img = transferTone(img)
# cv2.imwrite("./input/jiangwen/transferTone.png",img)
LDR_single(img,10)
LDR_single_add(img,10)
print("done")