-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaneuver_library.py
768 lines (558 loc) · 20.1 KB
/
maneuver_library.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
# -*- coding: utf8 -*-
import copy
import numpy as np
from numpy import r_, pi
import functools
import sliding_surface as ssf_lib
from model_and_parameters import rhs, z4d, z2_fnc
from model_and_parameters import beta, mu, dt, z4_park, z4_offset, eps
from model_and_parameters import zero_crossing_simulation
import man_C_aux
"""
This module contains functions to perform all individual maneuvers
"""
# TODO: these parameters should live in a config file
###################
# General code
###################
class Container(object):
"""
Empty Class to store arbitrary objects as attributes
"""
def __init__(self, **kwargs):
# add all key-word args
self.add(**kwargs)
def add(self, **kwargs):
# we do not want to overwrite something
assert not (set(kwargs.keys()).intersection(self.__dict__.keys()))
self.__dict__.update(kwargs)
# make the phi-Functions rw-accessible from everywhere
C = Container()
C.phi = None
class ManeuverResult(Container):
"""
Container class to store all maneuver-related information
"""
def __init__(self, **kwargs):
self.done = True
self.pr_start = []
self.pr_end = []
self.maneuver_name = "?"
self.label_borders = [0]
self.label_chain = []
self.phi_list = []
self.debug_flag = False
# add all key-word args
self.add(**kwargs)
def deep_copy(self):
"""
creates a new instance which has the same attributes with the same
values, but the attributes are copies of the attributes of the original
instance
"""
res = type(self)()
empty = type(self)() # for comparison
for k, v in self.__dict__.items():
if k in empty.__dict__:
continue
if isinstance(v, np.ndarray):
v = v * 1 # copy
res.__dict__.update({k: v})
# manually add some attributes
res.maneuver_name = self.maneuver_name
res.label_borders = self.label_borders
res.label_chain = self.label_chain
res.phi_list = copy.copy(self.phi_list)
return res
def save(self, fname):
"""
save container via numpy.savez
"""
np.savez(fname, tt=self.tt, zz=self.zz, acc=self.acc,
pr_start=self.pr_start, pr_end=self.pr_end,
label_chain=self.label_chain,
label_borders=self.label_borders,
phi_list=self.phi_list)
print "file written:", fname
def load(self, fname):
"""
load container from numpy.savez-format
"""
res = np.load(fname)
self.tt = res['tt']
self.zz = res['zz']
self.acc = res['acc']
self.pr_start = res['pr_start']
self.pr_end = res['pr_end']
self.label_chain = res['label_chain']
self.label_borders = res['label_borders']
self.phi_list = res['phi_list']
self.z1, self.z2, self.z3, self.z4 = self.zz.T
def set_name(self, maneuver_name):
self.maneuver_name = maneuver_name
assert len(self.label_chain) == 0
self.label_chain.append(self.maneuver_name)
def get_phi_labels(self):
return [d['label'] for d in self.phi_list]
def phi_dict(self):
"""
return a dictionary containing information about the sliding surface
of this maneuver
"""
phi = getattr(self, 'phi', None)
phi1 = getattr(self, 'phi1', None)
phi2 = getattr(self, 'phi2', None)
d = {'phi': phi, 'phi1': phi1, 'phi2': phi2}
# functions can not be serialized -> store evaluated functions
new_d = {}
z4 = np.linspace(-5, 5, 1000)
for name, func in d.items():
if not func is None:
z2 = func(z4)
new_d[name] = (z2, z4)
else:
new_d[name] = None
new_d['label'] = self.maneuver_name
return new_d
def join_containers(C1, C2):
"""
takes the content of two ManeuverResult-container objects and returns a
joined container
"""
res = ManeuverResult()
res.zz = np.vstack((C1.zz, C2.zz[1:, :]))
res.tt = np.hstack((C1.tt, C2.tt[1:] + C1.tt[-1]))
res.acc = np.hstack([C1.acc, C2.acc[1:]])
res.label_chain = C1.label_chain + C2.label_chain
C2_borders_transformed = [b + C1.tt[-1] for b in C2.label_borders]
res.label_borders = C1.label_borders + C2_borders_transformed
# store sliding surface information
if len(C1.phi_list) > 0:
res.phi_list = copy.copy(C1.phi_list)
else:
res.phi_list.append( C1.phi_dict() )
if len(C2.phi_list) > 0:
res.phi_list += C2.phi_list
else:
res.phi_list.append( C2.phi_dict() )
# quick access to state components
res.z1, res.z2, res.z3, res.z4 = res.zz.T
return res
def join_containers_with_pr(C1, C2, *containers, **kwargs):
"""
connect the states of the two containers by a parking regime such that
the resulting trajectory is consistent
"""
containers = [copy.copy(c) for c in containers ]
# assert C1.z4[-1] == C2.z4[0]
assert np.allclose(C1.z4[-1], C2.z4[0])
assert np.abs(C1.z2[-1]) < 2e-2
assert np.abs(C2.z2[0]) < 2e-2
z4 = C1.z4[-1]
# incorporate the z3_change by preceding parking regimes
z3_offset = kwargs.get('z3_offset', 0)
# apply z3 these changes to second container (already done for first one)
# C2_orig = C2 # for debugging
C2 = C2.deep_copy()
C2.z3 += z3_offset
C2.zz[:, 2] += z3_offset
# make z1 consistent
C2.zz[:, 0] += C1.z1[-1] - C2.z1[0]
dz3 = C2.z3[0] - C1.z3[-1]
z3_offset_new1 = 0
if np.abs(dz3) > 2 * pi:
# this would mean more than one rotation -> not necessary
z3_offset_new1 = int(dz3 / (2 * pi)) * 2 * pi
C2.z3 -= z3_offset_new1
C2.zz[:, 2] -= z3_offset_new1
dz3 = C2.z3[0] - C1.z3[-1]
assert np.abs(dz3) < 2 * pi
# how long do we have to wait to reach a position which is
# equivalent to C.z3[0]?
z3_offset_new2 = 0
if not np.sign(dz3) == np.sign(z4):
# we need to calculate a new dz3 (with the appropriate sign)
# -> new target for z3
z3_offset_new2 = 2 * pi * np.sign(z4)
C2.z3 += z3_offset_new2
C2.zz[:, 2] += z3_offset_new2
dz3 = C2.z3[0] - C1.z3[-1]
assert np.abs(dz3) < 2 * pi
steps = int(dz3 / z4 / dt)
assert steps > 0
tt = np.arange(steps + 1) * dt
# tt = [0, 1, ...] but first index will be omitted by join_containers
zz = np.zeros((steps + 1, 4))
zz[:, :] = C1.zz[-1, :] # use broadcasting here
zz[:, 2] = C1.z3[-1] + z4 * tt
assert np.abs( zz[-1, 2] - C2.z3[0] ) < np.abs(z4 * dt)
Cpr = ManeuverResult(tt=tt, zz=zz, acc=tt * 0)
Cpr.set_name("P")
tmp = join_containers(C1, Cpr)
res = join_containers(tmp, C2)
# save the start and end-value of parking regime
res.pr_start.extend(C1.pr_start)
res.pr_start.append(C1.tt[-1] + dt)
res.pr_start.extend(C2.pr_start)
res.pr_end.extend(C1.pr_end)
res.pr_end.append(tmp.tt[-1])
res.pr_end.extend(C2.pr_end)
z3_offset += z3_offset_new1 + z3_offset_new2
if len(containers) > 0:
return join_containers_with_pr(res, containers[0],
*containers[1:], z3_offset=z3_offset)
else:
return res
###################
# Simulation related code
###################
_rhs = functools.partial(rhs, phi_container=C)
z4d = functools.partial(z4d, phi_container=C)
z2_fnc = functools.partial(z2_fnc, phi_container=C)
def _neg_rhs(*args):
return -_rhs(*args)
########################
# Maneuver specific code
########################
############################################################################
###################
# Maneuver D
###################
def maneuverD(z_end):
"""
performs maneuver D (1 or 2) by performing maneuver A in backward time
with appropriately changed conditions:
"""
# Adapt z3 for maneuver A
z_start = np.array(z_end) * 1
z_start[2] *= -1
z_start[2] %= 2 * pi
resA = maneuverA(z_start)
resD = ManeuverResult(phi=resA.phi)
# manually add the endpoint (=start point for maneuver A),
# because maneuverA started slightly off for numerical reasons
resD.add( tt=np.hstack( (resA.tt, resA.tt[-1] + dt) ) )
resD.add( zz=np.vstack( (resA.zz[::-1, :], z_start) ) )
resD.zz[:, 2] *= -1
resD.zz[:, 2] %= 2 * pi # TODO!!: might cause discontinuities (? )
resD.add(z2=resD.zz[:, 1], z3=resD.zz[:, 2], z4=resD.zz[:, -1])
# special treatment of z1:
# determine where it has to start, such that it ends at the intended value
z1_raw = np.cumsum(resD.z2) * dt
Z1 = z_end[0] + z1_raw - z1_raw[-1]
resD.zz[:, 0] = Z1 # overwrite it on two places
resD.add(z1=Z1)
resD.add(acc=-resA.acc[::-1], z4_park=resA.z4_park)
resD.set_name(resA.maneuver_name.replace("A", "D"))
return resD
def maneuverD1(z_end):
"""
Warning: This function is deprecated and only has reference purpose.
Use maneuverD instead
performs maneuver D1 in backward time.
The following quantities are determined:
z3_star
z4_park
Delta_z1_D
acc_D (the input trajectory for the last maneuver)
"""
z1_cross, z2_cross, z3_cross, z4_cross = z_end
if pi / 2 < z3_cross < pi:
z2_sign = 1
elif pi < z3_cross < 1.5 * pi:
z2_sign = -1
else:
raise ValueError("unexpected z3_value")
z4_sign = z2_sign # first and third quadrant
#TODO: more consistency-checks (asserts)
assert z4_cross == 0
# set the function for the switching line
C.phi = ssf_lib.SlidingSurface(z4_star=0,
z4_cross=z4_park * z4_sign, beta=beta,
mu1=mu, mu2=mu, res_sign=z2_sign)
# initial value for the reduced dynamics
z_cross = [z3_cross, z4_cross + z4_offset * z4_sign]
tt = np.arange(0, 20, dt)
TT, ZZ = zero_crossing_simulation(_neg_rhs, z2_fnc, z_cross, tt)
Z3, Z4 = ZZ[::-1, :].T # reverse time direction
z3_star = Z3[0]
Z2 = C.phi(Z4)
ZZtmp = ZZ * 1
ZZtmp[:, 0] *= 1
#TODO!!: Verstehen, warum hier komische Werte rauskommen
acc = -C.phi.deriv_fnc(Z4) * z4d(ZZtmp) / 40
# cope with numerical errors
# insert the equlibrium manually
assert abs(Z2[-1]) < 2e-2
assert abs(Z4[-1]) < eps
Z3 = np.hstack( (Z3, [Z3[-1]]) )
Z4 = np.hstack( (Z4, [0]) )
Z2 = np.hstack( (Z2, [0]) )
acc = np.hstack( (acc[::-1], [0]) )
ZZ = np.vstack( (ZZ, [Z3[-1], Z4[-1]]) )
TT = np.hstack( (TT, TT[-1] + dt) )
Z1 = np.cumsum(Z2) * dt
Z1 += z1_cross - Z1[-1]
assert Z1[-1] == z1_cross
Delta_z1 = Z1[-1] - Z1[0]
# overall state:
zz = np.vstack((Z1, Z2, Z3, Z4)).T
res = ManeuverResult(z3_star=z3_star, Delta_z1=Delta_z1, acc=acc)
res.add(z4_park=z4_park * z4_sign)
res.add(phi=C.phi)
res.add(tt=TT, zz=zz, z1=Z1, z2=Z2, z3=Z3, z4=Z4)
res.add(delta_z1_D=Z1[-1] - Z1[0])
return res
###################
# Maneuver A
###################
def maneuverA(z_start):
"""
general function for maneuverA. depending on the initial state it
decides which submaneuver is to perform
"""
z1_star, z2_star, z3_star, z4_star = z_start
assert z4_star == z2_star == 0
if pi / 2 < z3_star < 3 * pi / 2:
return _maneuverA1(z_start)
elif z3_star < pi / 2 or z3_star > 3 * pi / 2:
return _maneuverA2(z_start)
else:
err = "invalid z3_star/pi: %f for maneuverA" % (z3_star / pi)
raise ValueError(err)
def _maneuverA1(z_start):
"""
performing maneuverA1 in forward time
"""
z1_star, z2_star, z3_star, z4_star = z_start
assert z4_star == z2_star == 0
if pi / 2 < z3_star < pi:
z2_sign = -1
elif pi < z3_star < 1.5 * pi:
z2_sign = 1
else:
raise ValueError( "invalid z3_star/pi: %f for A1" % (z3_star / pi) )
z4_sign = z2_sign # first and third quadrant
C.phi = ssf_lib.SlidingSurface(z4_star=0,
z4_cross=z4_park * z4_sign, beta=beta,
mu1=mu, mu2=mu, res_sign=z2_sign)
Z_star = [z3_star, z4_star + z4_offset * z4_sign]
tt = np.arange(0, 20, dt)
TT, ZZ = zero_crossing_simulation(_rhs, z2_fnc, Z_star, tt)
Z3, Z4 = ZZ.T
Z2 = C.phi(Z4)
Z1 = np.cumsum(Z2) * dt + z1_star
acc = C.phi.deriv_fnc(Z4) * z4d(ZZ)
res = ManeuverResult(acc=acc)
res.set_name("A1")
res.add(phi=C.phi)
res.add(z4_park=z4_park * z4_sign)
# overall state:
zz = np.vstack((Z1, Z2, Z3, Z4)).T
res.add(tt=TT, zz=zz, z1=Z1, z2=Z2, z3=Z3, z4=Z4)
return res
def _maneuverA2(z_start):
"""
performing maneuver A2 in forward time
"""
z1_star, z2_star, z3_star, z4_star = z_start
if 0 < z3_star < pi/2:
z4_park1 = z4_park
z4_park2 = -z4_park
z2_sign = -1
z4_sign = 1
elif 3*pi/2 < z3_star < 2*pi:
z4_park1 = -z4_park
z4_park2 = z4_park
z2_sign = 1
z4_sign = -1
else:
raise ValueError( "invalid z3_star/pi: %f for A2" % (z3_star / pi) )
# first part of the maneuver
C.phi = ssf_lib.SlidingSurface(z4_star=0, z4_cross=z4_park1,
beta=beta, mu1=mu, mu2=mu, res_sign=z2_sign)
z0 = r_[z3_star, z4_star + z4_offset * z4_sign]
tt = np.arange(0, 20, dt)
TT, ZZ = zero_crossing_simulation(_rhs, z4d, z0, tt)
Z3, Z4 = ZZ.T
Z2 = C.phi(Z4)
Z1 = np.cumsum(Z2) * dt
zz = np.vstack((Z1, Z2, Z3, Z4)).T
ACC = C.phi.deriv_fnc(Z4) * z4d(ZZ)
res1 = ManeuverResult(tt=TT, zz=zz, z1=Z1, z2=Z2, z3=Z3, z4=Z4)
res1.add(acc=ACC, phi=C.phi)
# second part of the maneuver:
min_z2_val = z2_sign * res1.z2[-1] # min. abs val of first branch
# the sign must be included
C.phi = ssf_lib.SlidingSurface(z4_star=0, z4_cross=z4_park2,
beta=beta, mu1=mu, mu2=mu, res_sign=z2_sign,
minval1=min_z2_val)
z0 = r_[res1.z3[-1], res1.z4[-1]]
TT, ZZ = zero_crossing_simulation(_rhs, z4d, z0, tt)
Z3, Z4 = ZZ.T
Z2 = C.phi(Z4)
Z1 = np.cumsum(Z2) * dt + res1.z1[-1]
zz = np.vstack((Z1, Z2, Z3, Z4)).T
ACC = C.phi.deriv_fnc(Z4) * z4d(ZZ)
res2 = ManeuverResult(tt=TT, zz=zz, z1=Z1, z2=Z2, z3=Z3, z4=Z4)
res2.add(acc=ACC, phi=C.phi)
res = join_containers(res1, res2)
res.add(phi1=res1.phi, phi2=res2.phi)
res.add(z4_park=z4_park2)
res.set_name("A2")
return res
############################################################################
# Maneuver B
############################################################################
# Special values for z3_B_star such that z3 at the end is the same
# (for both the first and third quadrant)
z3_B_start_Q1 = 0.70765 * pi
z3_B_start_Q3 = (2 - 0.70765) * pi
def _do_maneuverB(z_start):
"""
perform maneuver B at a given initial state
"""
z1, z2, z3, z4 = z_start
assert z2 == 0
assert abs(abs(z4) - z4_park) < eps
# correct numerical variation
z4 = np.sign(z4) * z4_park
z4_park1 = z4
if z4_park1 > 0:
# breaking @ Q1, accelerating @ Q3
z3_B_star = z3_B_start_Q1
else:
# breaking @ Q3, accelerating @ Q1
z3_B_star = z3_B_start_Q3
resD = maneuverD([z1, z2, z3_B_star, 0])
resA = maneuverA(resD.zz[-1, :])
res = join_containers(resD, resA)
res.add(phiA=resA.phi, phiD=resD.phi)
return res
def maneuverB(resA, resD):
"""
this function decides whether or not maneuver B is neccessary and
performs it if so.
"""
if resA.z4_park == resD.z4_park:
# insert some pseudo data, such that the data structure is not empty
arr = np.array([0])
res = ManeuverResult(acc=arr * 1.0)
res.add(tt=arr * 1.0, zz=resA.zz[-1:, :] * 1.0)
res.add(z4_park=resA.zz[-1, 3] * 1.0)
res.done = False
else:
# actually perform maneuver B
res = _do_maneuverB(resA.zz[-1,:])
res.label_borders = [0]
res.label_chain = []
res.set_name("B")
res = _maneuverB_phi_handling(res)
return res
def _maneuverB_phi_handling(res):
"""
combine the sliding surface data from B.D1 and B.A1 to one data set
"""
assert res.maneuver_name == "B"
PL = res.phi_list
assert len(PL) == 2
assert PL[0]['label'] == 'D1'
assert PL[1]['label'] == 'A1'
# unpack the tuples
phi1_z2, phi1_z4 = PL[0]['phi']
phi2_z2, phi2_z4 = PL[1]['phi']
# z4 is independent (-> linspace)
# z2 is the function value
# z2_new should be the max w.r.t. absolute value
z2_new = absmax(phi1_z2, phi2_z2)
d_new = {'label': 'B', 'phi': (z2_new, phi1_z4), 'phi1': None, 'phi2': None}
res.phi_list = [d_new]
return res
############################################################################
# Maneuver C
############################################################################
def maneuverC(resB, resD):
"""
general function of maneuverC:
takes the results of maneuversB and D and performs C such that the desired
preconditions for D are fullfilled
"""
z_cross_B = resB.zz[-1, :]
z_cross = resD.zz[-1, :]
Delta_z1_D = resD.z1[-1] - resD.z1[0]
z1_now = z_cross_B[0]
z1_des = z_cross[0]
# Determine the maneuver parameters
Delta_z1_C = z1_des - Delta_z1_D - z1_now # z1-displacement for maneuverC
z1, z2, z3, z4 = z_cross_B
z3_star_C, dz1_rest = \
man_C_aux.get_man_C_exec_parameters(z3, z4, Delta_z1_C)
# now perform the maneuver (first instance)
resC1 = _do_maneuverC(z3_star_C, z4)
resC1.set_name("C1")
if not dz1_rest == 0:
# second instance is necessary
z3_new = resC1.z3[-1]
z4_new = resC1.z4[-1]
z3_star_C_new, dz1_rest_new = \
man_C_aux.get_man_C_exec_parameters(z3_new, z4_new, dz1_rest)
resC2 = _do_maneuverC(z3_star_C_new, z4_new)
resC2.set_name("C2")
res = join_containers_with_pr(resC1, resC2)
else:
res = resC1
return res
def _do_maneuverC(z3_starC, z4):
"""
executes maneuverC
"""
assert abs(abs(z4) - z4_park) < eps
# local (including sign):
z4_park1 = z4
z4_sign = np.sign(z4)
if z4 > 0:
z2_sign = -1
else:
z2_sign = 1
# Determine the sign of the drift right next to the pariking position
drift_sign = np.sign( man_C_aux.z4_drift( z2=1e-3 * z2_sign,
z3=z3_starC, z4=z4) )
# maximum value (to respect constraints on abs(z2))
mv = 20 # actually this will never be reached
# up and down are meant w.r.t absolute value here:
phi_down = ssf_lib.SlidingSurface(z4_star=0, z4_cross=z4_park1,
beta=beta, mu1=mu, mu2=mu,
res_sign=z2_sign, singleEndBranch=True,
maxval1=mv, maxval2=mv)
phi_up = ssf_lib.SlidingSurface(z4_star=z4_park1 * 2,
z4_cross=z4_park1,
beta=beta, mu1=mu, mu2=mu, res_sign=z2_sign,
singleEndBranch=True, maxval1=mv,
maxval2=mv)
if drift_sign < 0:
C.phi = phi_down
else:
C.phi = phi_up
z0 = r_[z3_starC, z4_park1 + 1.0e-6*drift_sign]
tt = np.arange(0, 20, dt)
TT, ZZ = zero_crossing_simulation(_rhs, z2_fnc, z0, tt)
Z3, Z4 = ZZ.T
Z2 = C.phi(Z4)
Z1 = np.cumsum(Z2) * dt
# overall state:
zz = np.vstack((Z1, Z2, Z3, Z4)).T
ret = ManeuverResult(tt=TT, zz=zz, z1=Z1, z2=Z2, z3=Z3, z4=Z4)
ret.add(acc=Z1 * 0, phi1=C.phi, phi2=None)
return ret
def absmax(a, b):
"""
Helper-Function. Takes two equally shaped array and returns an array of the
same shape, whose entries are those with the respective maximum value
"""
assert a.shape == b.shape and a.ndim == 1
c = np.c_[a, b]
j = np.argmax(np.abs(c), axis=1)
i = np.arange(c.shape[0])
res = c[i, j]
assert res.shape == a.shape
return res