-
Notifications
You must be signed in to change notification settings - Fork 2
/
Gamma.m
74 lines (48 loc) · 1.8 KB
/
Gamma.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
(* ::Package:: *)
(*
This file is part of BProbeM.
"BProbeM, quantum and fuzzy geometry scanner" Copyright 2018 Timon Gutleb ([email protected]),
see https://github.com/TSGut/BProbeM/
Original version "BProbe" Copyright 2015 Lukas Schneiderbauer ([email protected]),
see https://github.com/lschneiderbauer/BProbe
BProbeM and BProbe are free software: you can redistribute them and/or modify
them under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
BProbeM and BProbe are distributed in the hope that they will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with BProbeM. If not, see <http://www.gnu.org/licenses/>.
*)
BeginPackage["BProbeM`Gamma`"];
MatrixRepGamma::usage="MatrixRepGamma[d] returns a list of matrices which constitute a representation of the Clifford algebra Cl[R^d].";
Begin["`Private`"];
MatrixRepGamma[n_] := Block[{gamma, gamma5}, (* Gamma matrices of Cl_n( R ) *)
If[n < 2,
Print["Gamma matrices for n<2 not possible."];
Abort[];
];
(* for n = 2m: recursion *)
If[Mod[n,2]==0,
If[n == 2,
Return[PauliMatrix[{1,2}]];
,
gamma = MatrixRepGamma[n-2];
gamma5 = (-I)^((n-2)/2) (Dot @@ gamma);
Return[
Join[
KroneckerProduct[#, IdentityMatrix[2]]& /@ gamma,
KroneckerProduct[gamma5, #]& /@ PauliMatrix[{1,2}]
]
];
];
,
gamma = MatrixRepGamma[n-1];
gamma5 = (-I)^((n-1)/2) (Dot @@ gamma);
Return[Append[gamma,gamma5]];
];
];
End[];
EndPackage[];