From 5ecedcc0015ff85248620fbe314bd26e8b33dba7 Mon Sep 17 00:00:00 2001 From: Flatiron Jenkins Date: Wed, 11 Dec 2024 18:01:34 -0500 Subject: [PATCH] Generated documentation for triqs/3.2.x jenkins-TRIQS-triqs-3.2.x-145 812da55ef66719e95482776026bfb0fb11d61a02 --- .../userguide/python/tutorials/ModelDMFT/01-IPT_and_DMFT.html | 2 +- .../ModelDMFT/02-Introduction_to_the_CTHYB_solver.html | 2 +- .../python/tutorials/ModelDMFT/05-VBDMFT_Hubbard.html | 2 +- .../tutorials/ModelDMFT/solutions/01s-IPT_and_DMFT.html | 4 ++-- .../solutions/03s-Single-orbital_Hubbard_with_CTQMC.html | 2 +- .../tutorials/ModelDMFT/solutions/05s-VBDMFT_Hubbard.html | 2 +- 6 files changed, 7 insertions(+), 7 deletions(-) diff --git a/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/01-IPT_and_DMFT.html b/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/01-IPT_and_DMFT.html index 62b58eeca5..882d335f40 100644 --- a/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/01-IPT_and_DMFT.html +++ b/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/01-IPT_and_DMFT.html @@ -1757,7 +1757,7 @@

Dynamical mean-field theory\(G_0\) and loop until convergence

-

af6bf92327524863b46585f341fe05b8

+

a59abb7e96de4e0e84a67cfbaab9bab0

Bethe lattice DMFT

diff --git a/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/02-Introduction_to_the_CTHYB_solver.html b/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/02-Introduction_to_the_CTHYB_solver.html index b4dc8ab985..f19a2b3c75 100644 --- a/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/02-Introduction_to_the_CTHYB_solver.html +++ b/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/02-Introduction_to_the_CTHYB_solver.html @@ -1721,7 +1721,7 @@

General reminder: Anderson impurity model and CTHYB solver

In the Anderson impurity model, we decompose the full lattice problem into an interacting site (‘impurity’) hybridised to a bath:

-

39802a313f16484ca30045e7359821ca

+

adab3add80d24cfc899b3291cb08ce5e

with the Hamiltonian :nbsphinx-math:`begin{align*}

H = & color{red}{H_{rm imp}} + color{darkgreen}{H_{rm hyb}} + color{blue}{H_{rm bath}} \ diff --git a/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/05-VBDMFT_Hubbard.html b/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/05-VBDMFT_Hubbard.html index 7ac84d3065..34c3a11b94 100644 --- a/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/05-VBDMFT_Hubbard.html +++ b/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/05-VBDMFT_Hubbard.html @@ -1722,7 +1722,7 @@

Valence-Bond DMFT solution of the Hubbard model\(U/t=10\) and \(t'/t=-0.3\), which are values commonly used for modeling hole-doped cuprates in a single-band framework. All energies (and temperatures) are expressed in units of \(D=4t=1\), and the doping is denoted by \(\delta\).

We subdivide the Brillouin Zone into a minimal set of two patches of equal area \(P_+\) (even) and \(P_-\) (odd).

-

fe34dd0a326f4ebaa9ffde88fa153152

+

d84d23788dff4855a153d9395ed2419e

\(P_+\) is a central square centered at momentum \((0,0)\) and containing the nodal region; the complementary region \(P_{-}\) extends to the edge of the BZ and contains in particular the antinodal region and the \((\pi,\pi)\) momentum.

Bethe lattice DMFT

@@ -1883,7 +1883,7 @@

Visualizing the Mott transition

Comparison with the literature

You can compare the result above with what can be found in the literature (review of Antoine Georges et al.)

-

11393f676cca40d5960cbb684479440a

+

f47f1923c06349f08326735a5107cd19

diff --git a/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/solutions/03s-Single-orbital_Hubbard_with_CTQMC.html b/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/solutions/03s-Single-orbital_Hubbard_with_CTQMC.html index e16b83635f..6aacda0e0d 100644 --- a/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/solutions/03s-Single-orbital_Hubbard_with_CTQMC.html +++ b/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/solutions/03s-Single-orbital_Hubbard_with_CTQMC.html @@ -1996,7 +1996,7 @@

Solution 6

+

322822eabb114097b74a49c522b39ea0

Regardless of which package you use for MaxEnt, it is very important to remember that there are some important knobs with which one can play in MaxEnt that can substantially change the results, and so one must be very careful in its use!

Exercise 7

diff --git a/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/solutions/05s-VBDMFT_Hubbard.html b/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/solutions/05s-VBDMFT_Hubbard.html index c618db8ba9..950526da80 100644 --- a/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/solutions/05s-VBDMFT_Hubbard.html +++ b/triqs/3.2.x/userguide/python/tutorials/ModelDMFT/solutions/05s-VBDMFT_Hubbard.html @@ -1726,7 +1726,7 @@

Valence-Bond DMFT solution of the Hubbard model\(U/t=10\) and \(t'/t=-0.3\), which are values commonly used for modeling hole-doped cuprates in a single-band framework. All energies (and temperatures) are expressed in units of \(D=4t=1\), and the doping is denoted by \(\delta\).

We subdivide the Brillouin Zone into a minimal set of two patches of equal area \(P_+\) (even) and \(P_-\) (odd).

-

e24e0166d0d34b0ea5aff98b9919575b

+

d5189b5f52244ce8b766b24d2ec82de2

\(P_+\) is a central square centered at momentum \((0,0)\) and containing the nodal region; the complementary region \(P_{-}\) extends to the edge of the BZ and contains in particular the antinodal region and the \((\pi,\pi)\) momentum.

[1]: