-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathproNE.py
executable file
·178 lines (141 loc) · 4.89 KB
/
proNE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# encoding=utf8
import numpy as np
import networkx as nx
import scipy.sparse
import scipy.sparse as sp
from scipy import linalg
from scipy.special import iv
from sklearn import preprocessing
from sklearn.utils.extmath import randomized_svd
import argparse
import time
class ProNE():
def __init__(self, graph_file, emb_file1, emb_file2, dimension):
self.graph = graph_file
self.emb1 = emb_file1
self.emb2 = emb_file2
self.dimension = dimension
self.G = nx.read_edgelist(self.graph, nodetype=int, create_using=nx.DiGraph())
self.G = self.G.to_undirected()
self.node_number = self.G.number_of_nodes()
matrix0 = scipy.sparse.lil_matrix((self.node_number, self.node_number))
for e in self.G.edges():
if e[0] != e[1]:
matrix0[e[0], e[1]] = 1
matrix0[e[1], e[0]] = 1
self.matrix0 = scipy.sparse.csr_matrix(matrix0)
print(matrix0.shape)
def get_embedding_rand(self, matrix):
# Sparse randomized tSVD for fast embedding
t1 = time.time()
l = matrix.shape[0]
smat = scipy.sparse.csc_matrix(matrix) # convert to sparse CSC format
print('svd sparse', smat.data.shape[0] * 1.0 / l ** 2)
U, Sigma, VT = randomized_svd(smat, n_components=self.dimension, n_iter=5, random_state=None)
U = U * np.sqrt(Sigma)
U = preprocessing.normalize(U, "l2")
print('sparsesvd time', time.time() - t1)
return U
def get_embedding_dense(self, matrix, dimension):
# get dense embedding via SVD
t1 = time.time()
U, s, Vh = linalg.svd(matrix, full_matrices=False, check_finite=False, overwrite_a=True)
U = np.array(U)
U = U[:, :dimension]
s = s[:dimension]
s = np.sqrt(s)
U = U * s
U = preprocessing.normalize(U, "l2")
print('densesvd time', time.time() - t1)
return U
def pre_factorization(self, tran, mask):
# Network Embedding as Sparse Matrix Factorization
t1 = time.time()
l1 = 0.75
C1 = preprocessing.normalize(tran, "l1")
neg = np.array(C1.sum(axis=0))[0] ** l1
neg = neg / neg.sum()
neg = scipy.sparse.diags(neg, format="csr")
neg = mask.dot(neg)
print("neg", time.time() - t1)
C1.data[C1.data <= 0] = 1
neg.data[neg.data <= 0] = 1
C1.data = np.log(C1.data)
neg.data = np.log(neg.data)
C1 -= neg
F = C1
features_matrix = self.get_embedding_rand(F)
return features_matrix
def chebyshev_gaussian(self, A, a, order=10, mu=0.5, s=0.5):
# NE Enhancement via Spectral Propagation
print('Chebyshev Series -----------------')
t1 = time.time()
if order == 1:
return a
A = sp.eye(self.node_number) + A
DA = preprocessing.normalize(A, norm='l1')
L = sp.eye(self.node_number) - DA
M = L - mu * sp.eye(self.node_number)
Lx0 = a
Lx1 = M.dot(a)
Lx1 = 0.5 * M.dot(Lx1) - a
conv = iv(0, s) * Lx0
conv -= 2 * iv(1, s) * Lx1
for i in range(2, order):
Lx2 = M.dot(Lx1)
Lx2 = (M.dot(Lx2) - 2 * Lx1) - Lx0
# Lx2 = 2*L.dot(Lx1) - Lx0
if i % 2 == 0:
conv += 2 * iv(i, s) * Lx2
else:
conv -= 2 * iv(i, s) * Lx2
Lx0 = Lx1
Lx1 = Lx2
del Lx2
print('Bessell time', i, time.time() - t1)
mm = A.dot(a - conv)
emb = self.get_embedding_dense(mm, self.dimension)
return emb
def save_embedding(emb_file, features):
# save node embedding into emb_file with word2vec format
f_emb = open(emb_file, 'w')
f_emb.write(str(len(features)) + " " + str(features.shape[1]) + "\n")
for i in range(len(features)):
s = str(i) + " " + " ".join(str(f) for f in features[i].tolist())
f_emb.write(s + "\n")
f_emb.close()
def parse_args():
parser = argparse.ArgumentParser(description="Run ProNE.")
parser.add_argument('-graph', nargs='?', default='data/blogcatalog.ungraph',
help='Graph path')
parser.add_argument('-emb1', nargs='?', default='emb/blogcatalog.emb',
help='Output path of sparse embeddings')
parser.add_argument('-emb2', nargs='?', default='emb/blogcatalog_enhanced.emb',
help='Output path of enhanced embeddings')
parser.add_argument('-dimension', type=int, default=128,
help='Number of dimensions. Default is 128.')
parser.add_argument('-step', type=int, default=10,
help='Step of recursion. Default is 10.')
parser.add_argument('-theta', type=float, default=0.5,
help='Parameter of ProNE. Default is 0.5.')
parser.add_argument('-mu', type=float, default=0.2,
help='Parameter of ProNE. Default is 0.2')
return parser.parse_args()
def main():
args = parse_args()
t_0 = time.time()
model = ProNE(args.graph, args.emb1, args.emb2, args.dimension)
t_1 = time.time()
features_matrix = model.pre_factorization(model.matrix0, model.matrix0)
t_2 = time.time()
embeddings_matrix = model.chebyshev_gaussian(model.matrix0, features_matrix, args.step, args.mu, args.theta)
t_3 = time.time()
print('---', model.node_number)
print('total time', t_3 - t_0)
print('sparse NE time', t_2 - t_1)
print('spectral Pro time', t_3 - t_2)
save_embedding(args.emb1, features_matrix)
save_embedding(args.emb2, embeddings_matrix)
print('save embedding done')
if __name__ == '__main__':
main()