-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_kernel.py
280 lines (211 loc) · 9.37 KB
/
plot_kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import numpy as np
import itertools
import kernel_learning as kler
import matplotlib.pyplot as plt
import jax_math as jmath
import database_preparation as datprep
datapath = "/home/stuke/Databases/QM9_XYZ_below10/"
def cleanup_results(result_file, multiple_runs = False, Choose_Folder = False, rep_no = 1):
''' gets data from resultfile and returns plottable Curve objects
Variables
---------
resultsfile : string, path to file containing pickled Result objects
multiple_runs : if True, calculate mean of runs with same lamda and sigma
Choose_Folder: boolean, if True, file is directly stored to result_file.
if not, result file is stored in ./Pickled/Kernel_Results folder
Returns
-------
this_curve : LearningResults object
'''
if not Choose_Folder:
#print("your results were stored to ./Pickled/Kernel_Results/")
result_file = "./Pickled/Kernel_Results/" + result_file + "_" + str(rep_no)+ "reps"
plottable_curves = []
if rep_no > 1:
multiple_runs = True
if multiple_runs:
lamdas = []
sigmas = []
results_list = datprep.read_compounds(result_file)
#print("len results_list:", len(results_list))
for result in results_list:
#print("type result:", type(result))
lamda = result.lamda
sigma = result.sigma
xlist = result.set_sizes
ylist = result.maes
if not multiple_runs:
name = curve_name(sigma, lamda)
curve = CurveObj(name)
curve.xnparray = xlist
curve.ynparray = ylist
plottable_curves.append(curve)
else:
lamdas.append(lamda)
sigmas.append(sigma)
#probably plottable_curves could already be returned here for False
if multiple_runs:
for l in list(set(lamdas)): #get all unique occurances for lamda
for s in list(set(sigmas)): #get all unique occurances for sigma
same_x = []
same_y = []
#find all results with these s and l
for result in results_list:
if result.lamda == l and result.sigma == s:
same_x.append(result.set_sizes)
same_y.append(result.maes)
#print("all arrays of same y:\n", same_y)
#calculate average now
av_ylist, yerror = jmath.calculate_mean(same_y)
print("the calculated mean and it's error are:\n mean:", av_ylist, "\n error:", yerror)
#add Curve object
name = curve_name(s,l)
curve = CurveObj(name)
curve.xnparray = same_x[0]
curve.ynparray = av_ylist
curve.yerror = yerror
plottable_curves.append(curve)
return(plottable_curves)
def curve_name( sigma, lamda):
name = ', sigma = %s, lambda = %s'% (str(sigma), str(lamda))
return(name)
def plot_learning(set_sizes ,\
maes,\
labels = [],\
xtitle = 'Training Set Size',\
ytitle = 'MAE [kcal/mol]',\
title = "sigma = 20\nlambda = 1e-3",\
filename = "QML_learning"):
'''
plots x and y values of learning curves
'''
#standard settings for plotting:
fontsize = 30
plt.rc('font', size=fontsize) # controls default text sizes
plt.rc('axes', titlesize=fontsize) # fontsize of the axes title
plt.rc('axes', labelsize=fontsize) # fontsize of the x and y labels
plt.rc('xtick', labelsize=fontsize*0.8) # fontsize of the tick labels
plt.rc('ytick', labelsize=fontsize*0.8) # fontsize of the tick labels
plt.rc('legend', fontsize=fontsize*0.8) # legend fontsize
plt.rc('figure',titlesize=fontsize*1.2) # fontsize of the figure title
plt.rcParams['axes.titlepad'] = 20
f, ax = plt.subplots(nrows = 1, ncols = 1, figsize = (12, 8))
for m in range(len(maes)):
mae_list = maes[m]
name = labels[m]
ax.loglog(set_sizes, mae_list, label = name, linewidth = 2)
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_position(('axes', -0.05))
ax.spines['bottom'].set_color('black')
ax.spines['left'].set_color('black')
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
ax.spines['left'].set_position(('axes', -0.05))
ax.xaxis.set_tick_params(width=2.5, length=20)
ax.yaxis.set_tick_params(width=2.5, length=20)
#set x and y axis label
ax.set_xlabel(xtitle)
ax.set_ylabel(ytitle)
#add legend
ax.legend()
#save figure
f.savefig(filename, bbox_inches = 'tight')
return(print("figure was saved to", filename))
def plot_scatter(y_test, y_predicted, label = "OM",\
title = "OM Representation Gaussian Kernel",\
figuretitle = "Scatterplot_OM",\
xtitle = "Atomic Energies [kcal/mol]",\
ytitle = "Predicted Atomic Energies [kcal/mol]"):
#standard settings for plotting:
fontsize = 30
plt.rc('font', size=fontsize) # controls default text sizes
plt.rc('axes', titlesize=fontsize) # fontsize of the axes title
plt.rc('axes', labelsize=fontsize) # fontsize of the x and y labels
plt.rc('xtick', labelsize=fontsize*0.8) # fontsize of the tick labels
plt.rc('ytick', labelsize=fontsize*0.8) # fontsize of the tick labels
plt.rc('legend', fontsize=fontsize*0.8) # legend fontsize
plt.rc('figure',titlesize=fontsize*1.2) # fontsize of the figure title
plt.rcParams['axes.titlepad'] = 20
#prep figure
f, ax = plt.subplots(nrows = 1, ncols = 1, figsize = (12, 8))
ax.set_xlabel(xtitle)
ax.set_ylabel(ytitle)
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_position(('axes', -0.05))
ax.spines['bottom'].set_color('black')
ax.spines['left'].set_color('black')
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
ax.spines['left'].set_position(('axes', -0.05))
ax.xaxis.set_tick_params(width=2.5, length=20)
ax.yaxis.set_tick_params(width=2.5, length=20)
st = f.suptitle(title)
#plot results
ax.scatter(y_test, y_predicted, label = label)
#make x and y ticks the same
multiplier = 10 ** -2
min_tick = int(min(y_test)*multiplier) / multiplier
plt.xticks(np.arange(min_tick, max(y_test)+100, 200))
plt.yticks(np.arange(min_tick, max(y_test)+100, 200))
#save figure
f.savefig(figuretitle, bbox_inches = 'tight')
return(print("figure was saved to", figuretitle))
def plot_curves(curve_list, file_title = "TrialLearning",\
plottitle = 'Learning Curves of CM Eigenvector Representation on QM9 Dataset\n 1000 molecules, 2 Runs Averaged',\
xtitle = 'Training Set Size',\
ytitle = 'MAE [kcal/mol]',\
multiple_runs = False,\
include_title = False):
'''plots learning curves from hartree to kcal/mol
curve_list: list of CurveObj class objects
file_title: string, where to store plot to
plottitle = title over plot
xtitle : string, title of x axis
ytitle : string, title of y axis
mutliple_runs : boolean, if true, plot curves with variation shadowed
include_title : boolean, if true, plot title
'''
#standard settings for plotting:
fontsize = 30
plt.rc('font', size=fontsize) # controls default text sizes
plt.rc('axes', titlesize=fontsize) # fontsize of the axes title
plt.rc('axes', labelsize=fontsize) # fontsize of the x and y labels
plt.rc('xtick', labelsize=fontsize*0.8) # fontsize of the tick labels
plt.rc('ytick', labelsize=fontsize*0.8) # fontsize of the tick labels
plt.rc('legend', fontsize=fontsize*0.8) # legend fontsize
plt.rc('figure',titlesize=fontsize*1.2) # fontsize of the figure title
plt.rcParams['axes.titlepad'] = 20
f, ax = plt.subplots(nrows = 1, ncols = 1, figsize = (12, 8))
#plot title if included
if include_title:
st = f.suptitle(plottitle)
ax.set_xlabel(xtitle)
ax.set_ylabel(ytitle)
ax.set_xscale('log')
ax.set_yscale('log')
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_position(('axes', -0.05))
ax.spines['bottom'].set_color('black')
ax.spines['left'].set_color('black')
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
ax.spines['left'].set_position(('axes', -0.05))
ax.xaxis.set_tick_params(width=2.5, length=20)
ax.yaxis.set_tick_params(width=2.5, length=20)
#assign marker for better differentiation
marker = itertools.cycle((',', '+', '.', 'o', '*', "1", "2", "3", "4", "8", "H", "D"))
#all the plotting has to be done below
for curve in curve_list:
yarray = curve.ynparray
ax.plot(curve.xnparray, curve.ynparray, linewidth = 2, marker = next(marker), label = curve.name)
print('x:' ,curve.xnparray,'\ny:', yarray)
#all the plotting has to be done above
f.legend = ax.legend(loc = 'lower left')
#handles, labels = ax.get_legend_handles_labels()
#f.legend(handles, labels, bbox_to_anchor=(1,1), loc="upper left")
figuretitle = "./Images/" + file_title + ".png"
f.savefig(figuretitle, bbox_inches = 'tight')
return(print("figure was saved to", figuretitle))