-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumerical_derivative.py
163 lines (125 loc) · 5.91 KB
/
numerical_derivative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
'''
@author: miriam
initiated: 18.12.2020
This file contains a numerical derivative function and a short workflow for getting derivatives
w.r.t.xi,yi,zi or Zi
'''
import time
import numpy as np
import database_preparation as datprep
dim = 23
def derivative(representation, ZRN, kind = 'numerical', order = 1, d1 = [0,0,0], d2 = [0,0,0], h = 0.00001):
'''the numerical derivative can only deal with unsorted representations,
while the analytical derivative can use both sorted and unsorted.
Variables:
----------
representation: some mapping function that takes as first three arguments Z, R and N
Examples are most of the jax.representation functions.
Derivatives d1=[0,...], d1 = [1, ...] and d2 = [0,...], d2 = [1,...]
can be taken of functions that have Z, R as first two arguments and
don't take any N value
ZRN = [Z, R, N] : List of arrays, namely Z = nuclear charges, R = nuclear positions in x,y,z
and N = total number of electrons of system (unloaded molecule: sum(Z)).
Defines where we want to differentiate.
kind : 'numerical', or 'analytical'
order: 0 = no derivative, just repro, 1 = 1rst derivative, 2 = 2nd derivative
d1, d2 : list of int, first and second derivative
defines coordinate w.r.t. which function is derived
[0,...] : dZ
[1,...] : dR
[2,...] : dN
[j,i,...]: dji, e.g. [0,3,...] = dZ3
[1,i,n] : which dx,dy,dz when deriving by dR
n = 0 : dxi
n = 1 : dyi
n = 2 : dzi
h : float
for numerical derivative, little change induced to variables
'''
if(kind == 'numerical'):
#only works with unsorted representations
#print("your representation is %s. If this is a sorted representation, change or do presorting\n \
# otherwise results may be false due to numerical differentiation" % (str(representation)))
#return representation
if order == 0:
return( representation(ZRN[0], ZRN[1],ZRN[2]))
#return 1st order numerical derivative
elif order == 1:
return( num_der1(representation, ZRN, d1, h))
#return second order numerical derivative
elif order == 2:
return( num_der2(representation, ZRN, d1, d2, h))
else:
print("you're order is out of bounds")
def num_der1(representation, ZRN, d1, h = 0.1, dimension = dim):
'''computes central difference derivative
of representatin w.r.t. d1
some elements taken from @author nick
Variables:
----------
same definition as in 'derivative' function
Returns:
---------
difference : central difference derivative
'''
#print("checkpoint 3: numerical differentiation 1st grade started, numerical_differentiation line 84")
#change variable by which to derive (d1) slightly by h
#print("ZRN: ", ZRN)
plus_ZRN = datprep.alter_coordinates(ZRN, d1, h)
minus_ZRN = datprep.alter_coordinates(ZRN, d1, -h)
#get representation with slightly changed input
tic = time.perf_counter()
repro_plus = representation(plus_ZRN[0], plus_ZRN[1], plus_ZRN[2])
repro_minus = representation(minus_ZRN[0], minus_ZRN[1], minus_ZRN[2])
toc = time.perf_counter()
#print(f"2Repros in {toc - tic:0.4f} seconds")
#print(repro_plus)
#print("repro minus: \n", repro_minus)
repro_pls = repro_plus.flatten()
repro_mns = repro_minus.flatten()
difference = (repro_pls - repro_mns)/ (2*h) #brackets around h are vital!
return(np.asarray(difference))
def num_der2(representation, ZRN, d1, d2, h = 0.1, dim = 3):
'''computes central difference derivative
of representatin w.r.t. d1 and d2 (2nd order)
Formula for 2nd order derivative:
derivative = f(a+h_1, b+h_2) - f(a+h_1, b-h_2) - f(a-h_1, b+h_2) + f(a-h_1, b-h_2))/(4h_1*h_2)
for d1 = d2:
derivative = (f(a+h) - 2f(a) + f(a-h))/h²
Variables:
----------
same definition as in 'derivative' function
Returns:
---------
'''
#change variable by which to derive (d1) slightly by h
plus_ZRN = datprep.alter_coordinates(ZRN, d1, h)
minus_ZRN = datprep.alter_coordinates(ZRN, d1, -h)
if (d1 == d2):
#calculate representation with slight changes
repro_plus = representation(plus_ZRN[0], plus_ZRN[1], plus_ZRN[2])
repro_minus = representation(minus_ZRN[0], minus_ZRN[1], minus_ZRN[2])
repro_normal = representation(ZRN[0], ZRN[1], ZRN[2])
#flatten representations
repro_pls = repro_plus.flatten()
repro_mns = repro_minus.flatten()
repro_nml = repro_normal.flatten()
difference = (repro_pls + repro_mns - 2*repro_nml) / (h**2)
else:
#change initial variable (d2) slightly by h
plusplus_ZRN = datprep.alter_coordinates(plus_ZRN, d2, h)
plusminus_ZRN = datprep.alter_coordinates(plus_ZRN, d2, -h)
minusplus_ZRN = datprep.alter_coordinates(minus_ZRN, d2, h)
minusminus_ZRN = datprep.alter_coordinates(minus_ZRN, d2, -h)
#calculate representation
repro_plusplus = representation(plusplus_ZRN[0], plusplus_ZRN[1], plusplus_ZRN[2])
repro_plusminus = representation(plusminus_ZRN[0], plusminus_ZRN[1], plusminus_ZRN[2])
repro_minusplus = representation(minusplus_ZRN[0], minusplus_ZRN[1], minusplus_ZRN[2])
repro_minusminus = representation(minusminus_ZRN[0], minusminus_ZRN[1], minusminus_ZRN[2])
#flatten results
repro_pp = repro_plusplus.flatten()
repro_pm = repro_plusminus.flatten()
repro_mp = repro_minusplus.flatten()
repro_mm = repro_minusminus.flatten()
difference = (repro_pp + repro_mm - repro_mp - repro_pm) / (4*h**2)
return(np.asarray(difference))