-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjax_representation.py
504 lines (410 loc) · 13.9 KB
/
jax_representation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
'''In this package representation functions are stored and their derivatives returned'''
import jax.numpy as jnp
import numpy as np
from jax.config import config
config.update("jax_enable_x64", True) #increase precision from float32 to float64
from time import perf_counter as tic
from jax import grad, ops
import jax_basis as basis
from jax_basis import empty_BoB_dictionary, BoB_emptyZ
from scipy import misc, special, linalg
import jax_math as jmath
import collections
def CM_full_unsorted_matrix(Z, R, N=0, size = 23):
''' Calculates unsorted coulomb matrix
Parameters
----------
Z : 1 x n dimensional array
contains nuclear charges
R : 3 x n dimensional array
contains nuclear positions
Return
------
D : 2D array (matrix)
Full Coulomb Matrix, dim(Z)xdim(Z)
'''
nick_version = False
n = Z.shape[0]
D = jnp.zeros((size, size))
if nick_version:
# calculate distances between atoms
dr = R[:, None] - R
distances = jnp.linalg.norm(dr, axis = 2)
# compute Zi*Zj matrix
charge_matrix = jnp.outer(Z, Z)
# returns i,i indexes (of diagonal elements)
diagonal_idx = jnp.diag_indices(n, ndim=2)
charge_matrix = ops.index_update(charge_matrix, diagonal_idx, 0.5 * Z ** 2.4)
# fix diagonal elements to 1 in distance matrix
distances = ops.index_update(distances, diagonal_idx, 1.0)
#compute cm by dividing charge matrix by distance matrix
cm_matrix = jnp.asarray(charge_matrix / distances)
return(cm_matrix)
#indexes need to be adapted to whatever form comes from xyz files
for i in range(n):
Zi = Z[i]
D = ops.index_update(D, (i,i), Zi**(2.4)/2)
for j in range(n):
if j != i:
Zj = Z[j]
Ri = R[i, :]
Rj = R[j, :]
distance = jnp.linalg.norm(Ri-Rj)
D = ops.index_update(D, (i,j) , Zi*Zj/(distance))
return(D)
def CM_full_sorted(Z, R, N = 0, size=3, unsorted = False):
''' Calculates sorted coulomb matrix
Parameters
----------
Z : 1 x n dimensional array
contains nuclear charges
R : 3 x n dimensional array
contains nuclear positions
N : int, total charge, irrelevant for CM but needed for derivatives
Return
------
D : 2D array (matrix)
Full Coulomb Matrix, dim(Z)xdim(Z)
'''
unsorted_M = CM_full_unsorted_matrix(Z,R,N, size)
if unsorted:
return(unsorted_M, 0)
val_row = jnp.asarray([jnp.linalg.norm(row) for row in unsorted_M])
order = val_row.argsort()[::-1]
D = jnp.asarray([[unsorted_M[i,j] for j in order] for i in order])
return(D, order)
def CM_ev(Z, R, N=0, maxsize = 23, unsorted = False):
'''
Parameters
----------
Z : 1 x n dimensional array
contains nuclear charges
R : 3 x n dimensional array
contains nuclear positions
N : float
number of electrons in system
here: meaningless, can remain empty
Return
------
ev : vector (1 x n dim.)
contains eigenvalues of sorted CM
(vectors: tuple
contains Eigenvectors of matrix (n dim.)
If i out of bounds, return none and print error)
'''
dim = Z.shape[0]
if unsorted:
M = CM_full_unsorted_matrix(Z,R,N, 23)
order = jnp.asarray(range(dim))
else:
M, order = CM_full_sorted(Z,R, N, dim)
ev, vectors = jnp.linalg.eigh(M)
#pad ev by max size (23 for QM9, QM7)
ev = jnp.pad(ev, (0,maxsize-dim))
return(ev, order)
def CM_ev_unsrt(Z, R, N=0, size = 23):
'''
Parameters
----------
Z : 1 x n dimensional array
contains nuclear charges
R : 3 x n dimensional array
contains nuclear positions
N : float
number of electrons in system
here: meaningless, can remain empty
Return
------
ev : vector (1 x n dim.)
contains eigenvalues of sorted CM
(vectors: tuple
contains Eigenvectors of matrix (n dim.)
If i out of bounds, return none and print error)
'''
M = CM_full_unsorted_matrix(Z,R,N, size = size)
ev, vectors = jnp.linalg.eigh(M)
return(ev)
def CM_single_ev(Z, R, N = 0., i = 0):
'''
Parameters
----------
Z : 1 x n dimensional array
contains nuclear charges
R : 3 x n dimensional array
contains nuclear positions
N : float
number of electrons in system
here: meaningless, can remain empty
i : integer
identifies EV to be returned
Return
------
ev : scalar
Eigenvalue EV(i)
If i out of bounds, return none and print error
'''
M = CM_trial(Z,R)
ev, vectors = jnp.linalg.eigh(M)
if i in range(len(ev)):
return(ev[i])
else:
print("EV integer out of bounds, maximal i possible: %i" % len(ev))
return()
def CM_index(Z, R, N, i = 0, j = 0):
'''
Parameters
----------
Z : 1 x n dimensional array
contains nuclear charges
R : 3 x n dimensional array
contains nuclear positions
N : float
number of electrons in system
here: meaningless, can remain empty
i : integer
identifies row to be returned
j : integer
identifies column to be returned
Return
------
D[i,j] : scalar
Entry of Coulomb Matrix at position [i,j]
'''
n = Z.shape[0]
Zi = Z[i]
if i == j:
return(Zi**(2.4)/2)
else:
Zj = Z[j]
Ri = R[i, :]
Rj = R[j, :]
distance = jnp.linalg.norm(Ri-Rj)
return( Zi*Zj/(distance))
def CM_eigenvectors_EVsorted(Z, R, N= 0, cutoff = 10):
''' Matrix containing eigenvalues of unsorted Coulomb matrix,
sorted by their eigenvalues. Cutoff possible at dedicated len.
or for certain sizes of eigenvalues
Parameters
----------
Z : 1 x n dimensional array
contains nuclear charges
R : 3 x n dimensional array
contains nuclear positions
N : float
number of electrons in system
here: meaningless, can remain empty
Return
------
M : Matrix
contains eigenvectors of sorted CM
(vectors: tuple
contains Eigenvectors of matrix (n dim.)
If i out of bounds, return none and print error)
'''
N = CM_full_unsorted_matrix(Z, R)
ev, evec = jnp.linalg.eigh(N)
order = jnp.argsort(ev)[:min(ev.size, cutoff)]
sorted_evec = evec[order]
return(sorted_evec)
def OM_full_unsorted_matrix(Z, R, N= 0):
#print("started fast OM calculation")
'''
The overlap matrix is constructed as described in the
'student-friendly guide to molecular integrals' by Murphy et al, 2018
STO-3G basis set (3 gaussian curves used to approximate the STO solution)
and was optimized by myself and Nick Browning
Parameters
----------
Z : 1 x n dimensional array
contains nuclear charges
R : 3 x n dimensional array
contains nuclear positions
size : size for hashed matrix
Return
------
D : 2D array (matrix)
Full Coulomb Matrix, dim(Z)xdim(Z)
'''
tstart = tic()
thisbasis, K = basis.build_sto3Gbasis(Z, R)
S = np.zeros((K,K))
#tbasis = tic()
#taold = tbasis
#tbold = tbasis
for a, bA in enumerate(thisbasis): #access row a of S matrix; unpack list from tuple
#ta = tic()
for b, bB in enumerate(thisbasis): #same for B
#tb = tic()
rA, rB = bA['r'], bB['r'] #get atom centered coordinates of A and B
lA,mA,nA = bA['l'],bA['m'],bA['n'] #get angular momentumnumbers of A
lB,mB,nB = bB['l'],bB['m'],bB['n']
aA, aB = np.asarray(bA['a']), np.asarray(bB['a']) #alpha vectors
for alphaB, dB in zip(bB['a'], bB['d']):
#Implement overlap element
normA = jmath.OM_compute_norm(aA, lA, mA, nA) #compute norm for A
normB = jmath.OM_compute_norm(alphaB, lB, mB, nB)
S_xyz = jmath.OM_compute_Sxyz(rA, rB, aA, alphaB, lA, lB, mA, mB, nA, nB)
exponent = np.exp(-aA*alphaB *jmath.IJsq(rA, rB)/(aA + alphaB))
#t1 = tic()
#factor is array over alphaA, dA elements
factor = np.array(bA['d']) * dB * normA * normB*exponent* S_xyz
S[a][b] += sum(factor)
#t2 = tic()
#print("adding factor to blist:", t2-t1)
#print("b,bB loop:", tbold - tb)
#tbold = tb
#print("a,bA loop:", taold - ta)
#taold = ta
tend = tic()
#print("total time:", tend - tstart)
return(S)
def OM_full_sorted(Z, R, N = 0, size = 51):
''' Calculates sorted coulomb matrix
Parameters
----------
Z : 1 x n dimensional array
contains nuclear charges
R : 3 x n dimensional array
contains nuclear positions
size: int, size of hashed matrix
Return
------
D : 2D array (matrix)
Full Coulomb Matrix, dim(Z)xdim(Z)
'''
M_unsorted = OM_full_unsorted_matrix(Z, R, N)
dim = M_unsorted.shape[0]
val_row = np.asarray([jnp.linalg.norm(row) for row in M_unsorted])
order = val_row.argsort()[::-1]
M_sorted = jnp.asarray([[M_unsorted[i,j] for j in order] for i in order])
#hash the matrix
M = np.pad(M_sorted, [(0, size-dim), (0, size-dim)], mode='constant')
return(M, order)
def OM_dimension(Z):
'''
Returns dimensions of OM matrix without calculating the basis explicitely
Variables
---------
Z : 1 x n dimensional array
contains nuclear charges
Returns
-------
d : integer
dimentsion of OM matrix
'''
d = 0
for nuc in Z:
d += len(basis.orbital_configuration[nuc])
return d
def OM_ev(Z, R, N=0, maxsize = 51):
'''
Parameters
----------
Z : 1 x n dimensional array
contains nuclear charges
R : 3 x n dimensional array
contains nuclear positions
N : float
number of electrons in system
here: meaningless, can remain empty
maxsize : int, size of hashed fingerprint
Return
------
ev : vector (1 x n dim.)
contains eigenvalues of sorted CM
(vectors: tuple
contains Eigenvectors of matrix (n dim.)
If i out of bounds, return none and print error)
'''
M, order = OM_full_sorted(Z,R, size = maxsize)
ev, vectors = jnp.linalg.eigh(M)
return(ev, order)
def OM_ev_unsrt(Z, R, N=0):
'''
Parameters
----------
Z : 1 x n dimensional array
contains nuclear charges
R : 3 x n dimensional array
contains nuclear positions
N : float
number of electrons in system
here: meaningless, can remain empty
Return
------
ev : vector (1 x n dim.)
contains eigenvalues of sorted CM
(vectors: tuple
contains Eigenvectors of matrix (n dim.)
If i out of bounds, return none and print error)
'''
M = OM_full_unsorted_matrix(Z,R)
ev, vectors = jnp.linalg.eigh(M)
return(ev)
def BoB_unsorted(nuclear_charges, coordinates, N= 0, asize={1:16, 6:7, 7:6, 8:4, 9:4}):
""" Generates a bag-of-bonds representation of the molecule. ``size=`` denotes the max number of atoms in the molecule (thus the size of the resulting square matrix.
``asize=`` is the maximum number of atoms of each type (necessary to generate bags of minimal sizes), with Z:no_of_atoms.
The resulting matrix is the upper triangle put into the form of a 1D-vector.
The returned type will be a list of 1D coulomb matrices.
:param arg1: Input representation.
:type arg1: (N, 3) shape numpy array.
:param arg1: Nuclear charges.
:type arg1: list of floats
:return: List of 1D Coulomb matrix
"""
Z = nuclear_charges
R = coordinates
natoms = len(Z)
coulomb_matrix = CM_full_unsorted_matrix(Z, R, N=0, size = natoms)
descriptor = []
#atomtypes = collections.Counter(Z)
for atom1, size1 in asize.items():
pos1 = np.where(Z == atom1)[0]
feature_vector = np.zeros(size1)
feature_vector[:pos1.size] = np.diag(coulomb_matrix)[pos1]
feature_vector.sort()
descriptor.append(feature_vector[:])
for atom2, size2 in asize.items():
if atom1 > atom2:
continue
if atom1 == atom2:
size = int(size1*(size1-1)/2)
feature_vector = np.zeros(size)
sub_matrix = coulomb_matrix[np.ix_(pos1,pos1)]
feature_vector[:int(pos1.size*(pos1.size-1)/2)] = sub_matrix[np.triu_indices(pos1.size, 1)]
feature_vector.sort()
descriptor.append(feature_vector[:])
else:
pos2 = np.where(Z == atom2)[0]
feature_vector = np.zeros(size1*size2)
feature_vector[:pos1.size*pos2.size] = coulomb_matrix[np.ix_(pos1,pos2)].ravel()
feature_vector.sort()
descriptor.append(feature_vector[:])
return np.concatenate(descriptor)
def BoB_dimension(Z):
''' Calculates dimension of BoB
Parameters
----------
Z : 1 x n dimensional array
contains nuclear charges
R : 3 x n dimensional array
contains nuclear positions
Returns
-------
n : integer
'''
#replace -1 indices in k_dictionary by actual values
#get keys to be replaced
unique, counts = np.unique(Z, return_counts = True)
#calculate total number of instances in Zi,Zj bags
ijbag = 0
for i in range(len(unique)):
for j in range(i+1, len(unique)):
bag = counts[i]*counts[j]
ijbag += bag
#calculate total number of instances in Zi,Zi bags
iibag = 0
for i in counts:
bag = jmath.binomial(i, 2)
iibag += bag
return(len(Z) + iibag + ijbag)