-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjax_math.py
130 lines (99 loc) · 3.55 KB
/
jax_math.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
def binomial(n, k):
'''fast way to calculate binomial coefficients by Andrew Dalke'''
if not 0 <= k <=n: return 0
b = 1
for t in range(min(k, n-k)):
b*=n
b /= (t + 1)
n -= 1
return b
def ck(l, m, a, b, k):
c = 0
for i in range(l+1):
for j in range(m+1):
if (j + i == k):
c += binomial(l, i)*binomial(m,j)*a**(l-i)*b**(m - j)
return(c)
def factorial2(n):
if n <= 0:
return 1
else:
return n * factorial2(n - 2)
def OM_compute_norm(alpha, l, m, n):
'''compute normalization constant for overlap matrix'''
N = (4*alpha)**(l+m+n)
N /= factorial2(2*l-1)*factorial2(2*m-1)*factorial2(2*n-1)
N *= ((2*alpha)/np.pi)**(1.5)
N = N**(0.5)
return(N)
def OM_compute_Si(qA, qB, gamma, rAi, rBi, rPi):
'''Variables
---------
qA : integer
quantum number (l for Sx, m for Sy, n for Sz) for atom A
qB : integer
same for atom B
rP : array 3D
center between A and B
rAi : float
Cartesian coordinate of dimension q for atom A (rA[0] for Sx e.g.)
rBi : float
Returns
-------
si
'''
si = 0.0
for k in range(int((qA + qB)/2)+1): #loop over only even numbers for sum(qA, qB)
c = ck(qA, qB, rPi-rAi, rPi - rBi, k*2)
si += c *factorial2(2*k-1) / (2*gamma)**k
si *= np.sqrt(np.pi/gamma)
return(si)
def OM_compute_Sxyz(rA, rB, alphaA, alphaB, lA, lB, mA, mB, nA, nB):
rP = OM_Gauss_Product(rA, rB, alphaA, alphaB)
sx = OM_compute_Si(lA, lB, alphaA + alphaB, rA[0], rB[0], rP[0])
sy = OM_compute_Si(mA, mB, alphaA + alphaB, rA[1], rB[1], rP[1])
sz = OM_compute_Si(nA, nB, alphaA + alphaB, rA[2], rB[2], rP[2])
return(sx*sy*sz)
def IJsq(rI, rJ):
return sum( (rI[i]-rJ[i])**2 for i in range(3))
def OM_Gauss_Product(rA, rB, alphaA, alphaB):
gamma = alphaA + alphaB
P = []
for i in range(3):
P.append((alphaA*rA[i] + alphaB * rB[i])/gamma)
return(P)
def BoB_fill(sorted_bag, desired_length):
missing_zeros = desired_length - len(sorted_bag)
padded_bag = np.pad(sorted_bag, (0,missing_zeros), 'constant')
return (padded_bag)
def normed(vector, maximum):
v_max = np.amax(vector)
normed_vector = vector / v_max
return(normed_vector)
def calculate_mean(list_nparrays):
'calculates average of list of arrays'
n = len(list_nparrays)
added = sum(list_nparrays)
#calculate average value
average = np.true_divide(added, n)
#calculate mean squared error
sqrd_errors = [(nparray - average)**2 for nparray in list_nparrays]
error = np.true_divide(sum(sqrd_errors), n)
return(average, error)
def unique_indices(records_array):
"""returns list of arrays containing indices of unique values in
input array
"""
# creates an array of indices, sorted by unique element
idx_sort = np.argsort(records_array)
# sorts records array so all unique elements are together
sorted_records_array = records_array[idx_sort]
#returns the unique values, the index of the first occurrence of a value, and the count for each element
vals, idx_start, count = np.unique(sorted_records_array, return_counts=True, return_index=True)
# splits the indices into separate arrays
res = np.split(idx_sort, idx_start[1:])
##filter them with respect to their size, keeping only items occurring more than once
#vals = vals[count > 1]
#res = filter(lambda x: x.size > 1, res)
return(list(res))