forked from x-y-zhao/BayLime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshap_compare.py
153 lines (112 loc) · 4.42 KB
/
shap_compare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import time
import shutil
from os import listdir
from os.path import isfile, join
import shap
from lime.wrappers.scikit_image import SegmentationAlgorithm
import tensorflow.keras
from tensorflow.keras.applications import inception_v3 as inc_net
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.imagenet_utils import decode_predictions
import matplotlib.pyplot as plt
import numpy as np
from skimage.segmentation import mark_boundaries
from lime.utils.record import record, shap_writeInfo
from lime import lime_image
from lime import Grad_CAM
from lime import evaluation
import csv
from lime import calculate_posteriors
print('Notebook run using keras:', tensorflow.keras.__version__)
############################################################
# use heatmap from Grad-CAM as prior knowledge for BayLime #
############################################################
# some necessary functions
# define a function that depends on a binary mask representing if an image region is hidden
def mask_image(zs, segmentation, image, background=None):
if background is None:
background = image.mean((0, 1))
# Create an empty 4D array
out = np.zeros((zs.shape[0],
image.shape[0],
image.shape[1],
image.shape[2]))
for i in range(zs.shape[0]):
out[i, :, :, :] = image
for j in range(zs.shape[1]):
if zs[i, j] == 0:
out[i][segmentation == j, :] = background
return out
def mkdir(path):
folder = os.path.exists(path)
if not folder:
os.makedirs(path)
else:
shutil.rmtree(path)
os.mkdir(path)
def transform_img_fn(path_list):
out = []
for img_path in path_list:
img = image.load_img(img_path, target_size=(299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = inc_net.preprocess_input(x)
out.append(x)
return np.vstack(out)
############################################################
# import model trained with imagenet
inet_model = inc_net.InceptionV3(weights='imagenet')
# set record file
mkdir('evaluation_output')
r = record('evaluation_output/shap_record.txt',time.time())
# import imagenet data from file
dataset_path = 'data/ILSVRC2012_img_val'
images_paths = [join(dataset_path, f) for f in listdir(dataset_path) if isfile(join(dataset_path, f))]
images = transform_img_fn(images_paths[:3])
# visualize some images
# plt.imshow(images[1] / 2 + 0.5)
# plt.show()
# initialize the evaluation with insert and delete algorithm
deletion = evaluation.CausalMetric(inet_model,'del')
insertion = evaluation.CausalMetric(inet_model,'ins')
preds = inet_model.predict(images)
pred_label = decode_predictions(preds)
top_preds = np.argsort(-preds)
ins_shap = []
del_shap = []
for i in range(1000):
print("---------------------")
print('Image No. ', i)
print("---------------------")
segmentation_fn = SegmentationAlgorithm('slic', kernel_size=4,
max_dist=200, ratio=0.2,
random_seed=None)
segments = segmentation_fn(images[i])
n_segments = np.max(segments)+1
def f(z):
return inet_model.predict(mask_image(z, segments, images[i], None))
#'non_Bay' 'Bay_non_info_prior' 'Bay_info_prior','BayesianRidge_inf_prior_fit_alpha'
aa = time.time()
# use Kernel SHAP to explain the network's predictions
explainer = shap.KernelExplainer(f, np.zeros((1, n_segments)))
shap_values = explainer.shap_values(np.ones((1, n_segments)), nsamples=200)
results = shap_values[top_preds[i][0]]
exp_results = np.flip(np.argsort(abs(np.array(results))))
bb = time.time()
aaa = bb - aa
# create folder to save output file
fname = "evaluation_output/image_" + str(i)
mkdir(fname)
h1_del = deletion.single_run(images[i], exp_results[0], segments, top_preds[i][0], pred_label[i], 'SHAP',fname)
h1_ins = insertion.single_run(images[i], exp_results[0], segments, top_preds[i][0], pred_label[i], 'SHAP',fname)
ins_shap.append(h1_ins)
del_shap.append(h1_del)
shap_writeInfo(r, i, h1_del, h1_ins)
print("---------------------")
print('Run Time: ', aaa)
print('Shap deletion: ', np.mean(del_shap))
print('Shap insertion: ', np.mean(ins_shap))
print("---------------------")
shap_writeInfo(r, -1, np.mean(del_shap), np.mean(ins_shap))
r.close()