forked from FENRlR/MB-iSTFT-VITS2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathS_monotonic_align_Triton.py
71 lines (64 loc) · 2.69 KB
/
S_monotonic_align_Triton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#- From https://github.com/supertone-inc/super-monotonic-align
import torch
import triton
import triton.language as tl
@triton.jit
def maximum_path_cp(
path, value, t_x, t_y,
B, T, S,
max_neg_val,
BLOCK_SIZE_X: tl.constexpr
):
batch = tl.program_id(axis=0)
path += batch * T * S
value += batch * T * S
x_length = tl.load(t_x + batch)
y_length = tl.load(t_y + batch)
offs_prev = tl.arange(0, BLOCK_SIZE_X)
init = tl.where(offs_prev == 0, tl.load(value), max_neg_val)
# for j in range(0,1,1): # set the first column to max_neg_val without init point
tl.store(value + offs_prev * S, init, mask=offs_prev < x_length)
for j in range(1, y_length, 1):
v_cur = tl.load(value + (offs_prev) * S + (j - 1), mask=(offs_prev < x_length), other=max_neg_val)
v_prev = tl.load(value + (offs_prev - 1) * S + (j - 1), mask=(0 < offs_prev) & (offs_prev < x_length),
other=max_neg_val)
# compare v_cur and v_prev, and update v with larger value
v = (tl.maximum(v_cur, v_prev) + tl.load(value + (offs_prev) * S + j, mask=(offs_prev < x_length)))
tl.store(value + (offs_prev) * S + j, v, mask=(offs_prev < x_length))
index = x_length - 1
for j in range(y_length - 1, -1, -1):
tl.store(path + (index) * S + j, 1)
if (index > 0): # (index == j) is not checked due to max_neg_val init
v_left = tl.load(value + (index) * S + j - 1) # .to(tl.float32)
v_leftdown = tl.load(value + (index - 1) * S + j - 1) # .to(tl.float32)
if (v_left < v_leftdown):
index += - 1
@torch.no_grad()
def maximum_path_triton(path, value, t_x, t_y, max_neg_val=-1e32):
B, T, S = path.shape
BLOCK_SIZE_X = max(triton.next_power_of_2(T), 16)
num_warps = 1 # Need to be 1 to prevent wrong output by slicing the operation
with torch.cuda.device(value.device.index):
maximum_path_cp[(B,)](
path, value, t_x, t_y,
B, T, S,
max_neg_val=max_neg_val,
num_warps=num_warps,
BLOCK_SIZE_X=BLOCK_SIZE_X)
return path
@torch.no_grad()
def maximum_path(value, mask, dtype=torch.float32): # callable
""" Triton optimized version.
value: [b, t_x, t_y]
mask: [b, t_x, t_y]
skip_mask: [b, t_x]
"""
# check value is contiguous
value = value.contiguous()
# Use masked_fill_ to avoid new tensor creation
value = value.masked_fill_(mask.logical_not(), 0)
path = torch.zeros_like(value, dtype=dtype)
t_x_max = mask.sum(1)[:, 0].to(torch.int32)
t_y_max = mask.sum(2)[:, 0].to(torch.int32)
path = maximum_path_triton(path, value, t_x_max, t_y_max)
return path