-
Notifications
You must be signed in to change notification settings - Fork 163
/
train.py
824 lines (730 loc) · 34.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
import argparse
import os
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import yaml
from torch.utils.tensorboard import SummaryWriter
import test # import test.py to get mAP after each epoch
from models.yolo import Model
from utils.datasets import *
from utils.utils import *
mixed_precision = True
try: # Mixed precision training https://github.com/NVIDIA/apex
from apex import amp
except:
print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')
mixed_precision = False # not installed
# Hyperparameters
hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
'momentum': 0.937, # SGD momentum
'weight_decay': 5e-4, # optimizer weight decay
'l1': False, # smooth l1 loss or iou loss
'giou': 0.05, # giou loss gain
'cls': 0.58, # cls loss gain
'cls_pw': 1.0, # cls BCELoss positive_weight
'obj': 1.0, # obj loss gain (*=img_size/320 if img_size != 320)
'obj_pw': 1.0, # obj BCELoss positive_weight
'iou_t': 0.20, # iou training threshold
'anchor_t': 4.0, # anchor-multiple threshold
'fl_gamma': 0.0, # focal loss gamma (efficientDet default is gamma=1.5)
'hsv_h': 0.014, # image HSV-Hue augmentation (fraction)
'hsv_s': 0.68, # image HSV-Saturation augmentation (fraction)
'hsv_v': 0.36, # image HSV-Value augmentation (fraction)
'degrees': 0.0, # image rotation (+/- deg)
'translate': 0.0, # image translation (+/- fraction)
'scale': 0.5, # image scale (+/- gain)
'shear': 0.0} # image shear (+/- deg)
# Overwrite hyp with hyp*.txt (optional)
f = glob.glob('hyp*.txt')
if f:
print('Using %s' % f[0])
for k, v in zip(hyp.keys(), np.loadtxt(f[0])):
hyp[k] = v
# Print focal loss if gamma > 0
if hyp['fl_gamma']:
print('Using FocalLoss(gamma=%g)' % hyp['fl_gamma'])
def train(hyp):
epochs = opt.epochs # 300
batch_size = opt.batch_size # 64
weights = opt.weights # initial training weights
# Configure
init_seeds(1)
with open(opt.data) as f:
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
train_path = data_dict['train']
test_path = data_dict['val']
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
# Remove previous results
for f in glob.glob(os.path.join(rdir, '*_batch*.jpg')) + glob.glob(results_file):
os.remove(f)
# Create model
model = Model(opt.cfg).to(device)
if opt.ft:
new = torch.load(weights, map_location=device)
model = new['model']
print(model)
print("Finetune Mode...")
assert model.md['nc'] == nc, '%s nc=%g classes but %s nc=%g classes' % (opt.data, nc, opt.cfg, model.md['nc'])
# Image sizes
gs = int(max(model.stride)) # grid size (max stride)
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
# Optimizer
nbs = 64 # nominal batch size
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
if opt.sl > 0:
hyp['sl'] *= batch_size * accumulate / nbs
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in model.named_parameters():
if v.requires_grad:
if '.bias' in k:
pg2.append(v) # biases
elif '.weight' in k and '.bn' not in k:
pg1.append(v) # apply weight decay
else:
pg0.append(v) # all else
optimizer = optim.Adam(pg0, lr=hyp['lr0']) if opt.adam else \
optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
del pg0, pg1, pg2
# Load Model
google_utils.attempt_download(weights)
start_epoch, best_fitness = 0, 0.0
if weights.endswith('.pt') and not opt.ft: # pytorch format
ckpt = torch.load(weights, map_location=device) # load checkpoint
# load model
try:
dic = {}
for k, v in ckpt['model'].float().state_dict().items():
if k in model.state_dict() and model.state_dict()[k].shape == v.shape:
dic[k] = v
ckpt['model'] = dic
# ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
# if model.state_dict()[k].shape == v.shape} # to FP32, filter
model.load_state_dict(ckpt['model'], strict=False)
except KeyError as e:
s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s." \
% (opt.weights, opt.cfg, opt.weights)
raise KeyError(s) from e
if opt.resume:
# load optimizer
if ckpt['optimizer'] is not None:
optimizer.load_state_dict(ckpt['optimizer'])
best_fitness = ckpt['best_fitness']
# load results
if ckpt.get('training_results') is not None:
with open(results_file, 'w') as file:
file.write(ckpt['training_results']) # write results.txt
start_epoch = ckpt['epoch'] + 1
del ckpt
elif weights.endswith('.pth'):
ckpt = torch.load(weights, map_location=device) # load checkpoint
# load model
try:
dic = {}
for k in ckpt:
v = ckpt[k]
n_name = k.replace("features", "model")
if n_name in model.state_dict() and model.state_dict()[n_name].shape == v.shape:
dic[n_name] = v
ckpt['model'] = dic
# ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
# if model.state_dict()[k].shape == v.shape} # to FP32, filter
model.load_state_dict(dic, strict=False)
print("restore %d vars from %s" % (len(dic), weights))
except KeyError as e:
s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s." \
% (opt.weights, opt.cfg, opt.weights)
raise KeyError(s) from e
del ckpt
if opt.dist:
print("load t-model from", opt.t_weights)
t_model = torch.load(opt.t_weights, map_location=torch.device('cpu'))
if t_model.get("model", None) is not None:
t_model = t_model["model"]
t_model.to(device)
t_model.float()
t_model.train()
if opt.d_feature:
activation = {}
def get_activation(name):
def hook(model, inputs, outputs):
activation[name] = outputs
return hook
def get_hooks():
hooks = []
# S-model
hooks.append(model.model._modules["6"].register_forward_hook(get_activation("s_f1")))
hooks.append(model.model._modules["13"].register_forward_hook(get_activation("s_f2")))
hooks.append(model.model._modules["17"].register_forward_hook(get_activation("s_f3")))
# T-model
hooks.append(t_model.model._modules["4"].register_forward_hook(get_activation("t_f1")))
hooks.append(t_model.model._modules["6"].register_forward_hook(get_activation("t_f2")))
hooks.append(t_model.model._modules["10"].register_forward_hook(get_activation("t_f3")))
return hooks
# feature convert
from models.common import Converter
c1 = 128
c2 = 256
c3 = 512
if opt.type == "dfmvocs_l":
c1 = 256
c2 = 512
c3 = 1024
S_Converter_1 = Converter(32, c1, act=True)
S_Converter_2 = Converter(96, c2, act=True)
S_Converter_3 = Converter(320, c3, act=True)
S_Converter_1.to(device)
S_Converter_2.to(device)
S_Converter_3.to(device)
S_Converter_1.train()
S_Converter_2.train()
S_Converter_3.train()
T_Converter_1 = nn.ReLU6()
T_Converter_2 = nn.ReLU6()
T_Converter_3 = nn.ReLU6()
# T_Converter_1 = Converter(c1, 32, act=True)
# T_Converter_2 = Converter(c2, 96, act=True)
# T_Converter_3 = Converter(c3, 320, act=True)
T_Converter_1.to(device)
T_Converter_2.to(device)
T_Converter_3.to(device)
T_Converter_1.train()
T_Converter_2.train()
T_Converter_3.train()
# Mixed precision training https://github.com/NVIDIA/apex
if mixed_precision:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
scheduler.last_epoch = start_epoch - 1 # do not move
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
# plot_lr_scheduler(optimizer, scheduler, epochs)
# Initialize distributed training
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
dist.init_process_group(backend='nccl', # distributed backend
init_method='tcp://127.0.0.1:9999', # init method
world_size=1, # number of nodes
rank=0) # node rank
model = torch.nn.parallel.DistributedDataParallel(model)
if opt.dist:
raise NotImplementedError("Distillation do not support DDP!")
# Dataset
dataset = LoadImagesAndLabels(train_path, imgsz, batch_size,
augment=True,
hyp=hyp, # augmentation hyperparameters
rect=opt.rect, # rectangular training
cache_images=opt.cache_images,
single_cls=opt.single_cls)
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg)
# Dataloader
batch_size = min(batch_size, len(dataset))
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
num_workers=nw,
shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
pin_memory=True,
collate_fn=dataset.collate_fn)
# Testloader
testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, imgsz_test, batch_size,
hyp=hyp,
rect=True,
cache_images=opt.cache_images,
single_cls=opt.single_cls),
batch_size=batch_size,
num_workers=nw,
pin_memory=True,
collate_fn=dataset.collate_fn)
# Model parameters
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
model.names = data_dict['names']
# Class frequency
labels = np.concatenate(dataset.labels, 0)
c = torch.tensor(labels[:, 0]) # classes
# cf = torch.bincount(c.long(), minlength=nc) + 1.
# model._initialize_biases(cf.to(device))
plot_labels(labels, os.path.join(rdir, "label.png"))
tb_writer.add_histogram('classes', c, 0)
# Check anchors
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
# Exponential moving average
ema = torch_utils.ModelEMA(model)
# Start training
t0 = time.time()
nb = len(dataloader) # number of batches
n_burn = max(3 * nb, 1e3) # burn-in iterations, max(3 epochs, 1k iterations)
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
print('Using %g dataloader workers' % nw)
print('Starting training for %g epochs...' % epochs)
if opt.sl > 0:
print("Sparse Learning Model!")
print("===> Sparse learning rate is ", opt.sl)
ignore_idx = [230, 260, 290]
prunable_modules = []
prunable_module_type = (nn.BatchNorm2d, )
for i, m in enumerate(model.modules()):
if i in ignore_idx:
continue
if isinstance(m, prunable_module_type):
prunable_modules.append(m)
# torch.autograd.set_detect_anomaly(True)
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
if opt.dist and opt.d_feature:
hooks = get_hooks()
model.train()
# Update image weights (optional)
if dataset.image_weights:
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx
mloss = torch.zeros(4, device=device) # mean losses
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
# Burn-in
if ni <= n_burn:
xi = [0, n_burn] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])
# Multi-scale
if opt.multi_scale:
sz = random.randrange(np.ceil(imgsz * 0.66), np.ceil(imgsz * 1.33 + 32)) // gs * gs # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Forward
pred = model(imgs)
if opt.dist:
if opt.d_online:
t_pred = t_model(imgs)
for p in t_pred:
p = p.detach()
else:
with torch.no_grad():
t_pred = t_model(imgs)
if opt.d_feature:
s_f1 = S_Converter_1(activation["s_f1"])
s_f2 = S_Converter_2(activation["s_f2"])
s_f3 = S_Converter_3(activation["s_f3"])
s_f = [s_f1, s_f2, s_f3]
s_f = (activation["s_f1"], activation["s_f2"], activation["s_f3"])
t_f1 = T_Converter_1(activation["t_f1"])
t_f2 = T_Converter_2(activation["t_f2"])
t_f3 = T_Converter_3(activation["t_f3"])
t_f = [t_f1, t_f2, t_f3]
# t_f = (activation["t_f1"], activation["t_f2"], activation["t_f3"])
# Loss
loss, loss_items = compute_loss(pred, targets.to(device), model, None)
# Sparse Learning
if opt.sl > 0:
loss = compute_pruning_loss(pred, prunable_modules, model, loss)
# distillation
if opt.dist:
if opt.d_online:
loss, _ = compute_loss(t_pred, targets.to(device), t_model, loss)
loss = compute_distillation_output_loss(pred, t_pred, model, loss)
if opt.d_feature:
loss = compute_distillation_feature_loss(s_f, t_f, model, loss)
if not torch.isfinite(loss):
print('WARNING: non-finite loss, ending training ', loss_items)
return results
# Backward
if mixed_precision:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
# Optimize
if ni % accumulate == 0:
optimizer.step()
optimizer.zero_grad()
ema.update(model)
# Print
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.4g' * 6) % (
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
pbar.set_description(s)
# Plot
if ni < 3:
f = os.path.join(rdir, 'train_batch%g.jpg' % i) # filename
res = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
if tb_writer:
tb_writer.add_image(f, res, dataformats='HWC', global_step=epoch)
# tb_writer.add_graph(model, imgs) # add model to tensorboard
# end batch ------------------------------------------------------------------------------------------------
if opt.dist and opt.d_feature:
for hook in hooks:
hook.remove()
# Scheduler
scheduler.step()
# mAP
ema.update_attr(model)
final_epoch = epoch + 1 == epochs
if not opt.notest or final_epoch: # Calculate mAP
results, maps, times = test.test(opt.data,
batch_size=batch_size,
imgsz=imgsz_test,
save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
model=ema.ema,
single_cls=opt.single_cls,
dataloader=testloader,
fast=ni < n_burn)
# Write
with open(results_file, 'a') as f:
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
if len(opt.name) and opt.bucket:
os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))
# Tensorboard
if tb_writer:
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
for x, tag in zip(list(mloss[:-1]) + list(results), tags):
tb_writer.add_scalar(tag, x, epoch)
# Update best mAP
fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
if fi > best_fitness:
best_fitness = fi
# Save model
save = (not opt.nosave) or (final_epoch and not opt.evolve)
if save:
with open(results_file, 'r') as f: # create checkpoint
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': f.read(),
'model': ema.ema.module if hasattr(model, 'module') else ema.ema,
'optimizer': None if final_epoch else optimizer.state_dict()}
# Save last, best and delete
torch.save(ckpt, last)
if (best_fitness == fi) and not final_epoch:
torch.save(ckpt, best)
del ckpt
# end epoch ----------------------------------------------------------------------------------------------------
# end training
n = opt.name
if len(n):
n = '_' + n if not n.isnumeric() else n
fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
if os.path.exists(f1):
os.rename(f1, f2) # rename
ispt = f2.endswith('.pt') # is *.pt
strip_optimizer(f2) if ispt else None # strip optimizer
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload
if not opt.evolve:
plot_results() # save as results.png
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
torch.cuda.empty_cache()
return results
if __name__ == '__main__':
check_git_status()
parser = argparse.ArgumentParser()
parser.add_argument("--type", type=str, help="Custom training type")
parser.add_argument('--epochs', type=int, default=30)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--cfg', type=str, help='*.cfg path')
parser.add_argument('--data', type=str, help='*.data path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--weights', type=str, help='initial weights path')
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--adam', action='store_true', help='use adam optimizer')
parser.add_argument('--multi-scale', default=True, action='store_true', help='vary img-size +/- 50%')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
parser.add_argument('--nw', type=int, default=None, help='num of worker')
# pruning
parser.add_argument('--sl', default=0, type=float, help='sparse learning')
parser.add_argument('--ft', action='store_true', default=False, help='fine-tune')
# distillation
parser.add_argument('--dist', action='store_true', help='distillation')
parser.add_argument('--t_weights', type=str, default="", help='teacher model for distillation')
parser.add_argument('--d_feature', action='store_true', default=False, help='if true, distill both feature and output layers')
parser.add_argument('--d_online', action='store_true', default=False, help='if true, using online-distillation')
opt = parser.parse_args()
if opt.type == "mcocos":
opt.cfg = 'models/mobile-yolo5s.yaml'
opt.data = "data/coco.yaml"
opt.weights = "outputs/dmvocs/weights/best_dmvocs.pt"
opt.name = opt.type
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
if opt.type == "dmcocos":
opt.cfg = 'models/mobile-yolo5s.yaml'
opt.data = "data/coco.yaml"
opt.name = opt.type
opt.weights = "outputs/dmvocs/weights/best_dmvocs.pt"
opt.epochs = 10
opt.batch_size = 24
opt.multi_scale = False
opt.dist = True
opt.t_weights = "/data/checkpoints/yolov5/yolov5s.pt"
hyp["dist"] = 1
if opt.type == "vocs":
opt.cfg = 'models/yolov5s_voc.yaml'
opt.data = "data/voc.yaml"
opt.weights = "/data/checkpoints/yolov5/yolov5s.pt"
opt.name = opt.type
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
if opt.type == "vocl":
opt.cfg = 'models/yolov5l_voc.yaml'
opt.data = "data/voc.yaml"
opt.weights = "/data/checkpoints/yolov5/yolov5l.pt"
opt.name = opt.type
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
if opt.type == "vocx":
opt.cfg = 'models/yolov5x_voc.yaml'
opt.data = "data/voc.yaml"
opt.weights = "/data/checkpoints/yolov5/yolov5l.pt"
opt.name = opt.type
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
if opt.type == "mvocs":
opt.cfg = 'models/mobile-yolo5s_voc.yaml'
opt.data = "data/voc.yaml"
opt.weights = "/root/.cache/torch/checkpoints/mobilenet_v2-b0353104.pth"
opt.name = opt.type
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
if opt.type == "mvocl":
opt.cfg = 'models/mobile-yolo5l_voc.yaml'
opt.data = "data/voc.yaml"
opt.name = opt.type
opt.weights = "/root/.cache/torch/checkpoints/mobilenet_v2-b0353104.pth"
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
if opt.type == "mvoc3":
opt.cfg = 'models/mobile-yolo3_voc.yaml'
opt.data = "data/voc.yaml"
opt.name = opt.type
opt.weights = "/root/.cache/torch/checkpoints/mobilenet_v2-b0353104.pth"
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
if opt.type == "smvocs":
opt.cfg = 'models/mobile-yolo5s_voc.yaml'
opt.data = "data/voc.yaml"
opt.name = opt.type
opt.weights = "/root/.cache/torch/checkpoints/mobilenet_v2-b0353104.pth"
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
opt.sl = 6e-4
hyp["sl"] = opt.sl
if opt.type == "fsmvocs05":
opt.cfg = 'models/mobile-yolo5s_voc.yaml'
opt.data = "data/voc.yaml"
opt.name = opt.type
opt.weights = "outputs/smvocs/weights/pruned_5.pt"
opt.epochs = 20
opt.batch_size = 24
opt.multi_scale = False
opt.ft = True
if opt.type == "fsmvocs":
opt.cfg = 'models/mobile-yolo5s_voc.yaml'
opt.data = "data/voc.yaml"
opt.name = opt.type
opt.weights = "outputs/smvocs/weights/pruned_auto.pt"
opt.epochs = 20
opt.batch_size = 24
opt.multi_scale = False
opt.ft = True
if opt.type == "dmvocs":
opt.cfg = 'models/mobile-yolo5s_voc.yaml'
opt.data = "data/voc.yaml"
opt.name = opt.type
opt.weights = "/root/.cache/torch/checkpoints/mobilenet_v2-b0353104.pth"
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
opt.dist = True
opt.t_weights = "outputs/voc/weights/best_voc.pt"
hyp["dist"] = 1
if opt.type == "dvocs_l":
opt.cfg = 'models/yolov5s_voc.yaml'
opt.data = "data/voc.yaml"
opt.name = opt.type
opt.weights = "/data/checkpoints/yolov5/yolov5s.pt"
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
opt.dist = True
opt.t_weights = "outputs/vocl/weights/best_vocl.pt"
hyp["dist"] = 1
if opt.type == "dmvocs_l":
opt.cfg = 'models/mobile-yolo5s_voc.yaml'
opt.data = "data/voc.yaml"
opt.name = opt.type
opt.weights = "/root/.cache/torch/checkpoints/mobilenet_v2-b0353104.pth"
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
opt.dist = True
opt.t_weights = "outputs/vocl/weights/best_vocl.pt"
hyp["dist"] = 1
if opt.type == "dfmvocs":
opt.cfg = 'models/mobile-yolo5s_voc.yaml'
opt.data = "data/voc.yaml"
opt.name = opt.type
opt.weights = "/root/.cache/torch/checkpoints/mobilenet_v2-b0353104.pth"
opt.epochs = 100
opt.batch_size = 24
opt.multi_scale = False
opt.dist = True
opt.t_weights = "outputs/vocs/weights/best_vocs.pt"
opt.d_feature = True
hyp["dist"] = 1.0
if opt.type == "dfsmvocs":
opt.cfg = 'models/mobile-yolo5s_voc.yaml'
opt.data = "data/voc.yaml"
opt.name = opt.type
opt.weights = "/root/.cache/torch/checkpoints/mobilenet_v2-b0353104.pth"
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
opt.dist = True
opt.t_weights = "outputs/vocs/weights/best_vocs.pt"
opt.d_feature = True
hyp["dist"] = 1.0
if opt.type == "dfmvocs_l":
opt.cfg = 'models/mobile-yolo5s_voc.yaml'
opt.data = "data/voc.yaml"
opt.name = opt.type
opt.weights = "/root/.cache/torch/checkpoints/mobilenet_v2-b0353104.pth"
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
opt.dist = True
opt.t_weights = "outputs/vocl/weights/best_vocl.pt"
opt.d_feature = True
hyp["dist"] = 1.0
if opt.type == "dtamvocs":
opt.cfg = 'models/mobile-yolo5s_voc.yaml'
opt.data = "data/voc.yaml"
opt.name = opt.type
opt.weights = "/root/.cache/torch/checkpoints/mobilenet_v2-b0353104.pth"
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
opt.dist = True
opt.t_weights = "outputs/dvocs_l/weights/best_dvocs_l.pt"
opt.d_feature = True
hyp["dist"] = 1.0
if opt.type == "domvocs":
# TODO
opt.cfg = 'models/mobile-yolo5s_voc.yaml'
opt.data = "data/voc.yaml"
opt.name = opt.type
opt.weights = "/root/.cache/torch/checkpoints/mobilenet_v2-b0353104.pth"
opt.epochs = 50
opt.batch_size = 24
opt.multi_scale = False
opt.dist = True
opt.d_online = True
opt.t_weights = "/data/checkpoints/yolov5/yolov5s.pt"
hyp["dist"] = 1
if opt.nw is None:
nw = min([os.cpu_count(), opt.batch_size if opt.batch_size > 1 else 0, 8]) # number of workers
else:
nw = opt.nw
print("Using", opt.type, "default config")
rdir = 'outputs' + os.sep + opt.name
wdir = rdir + os.sep + 'weights' + os.sep # weights dir
os.makedirs(wdir, exist_ok=True)
last = wdir + 'last.pt'
best = wdir + 'best.pt'
if opt.resume:
opt.weights = last
results_file = os.path.join(rdir, 'results.txt')
opt.cfg = check_file(opt.cfg) # check file
opt.data = check_file(opt.data) # check file
print(hyp)
print(opt)
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
print("Using device: ", device)
if device.type == 'cpu':
mixed_precision = False
# Train
if not opt.evolve:
tb_writer = SummaryWriter(comment=opt.name)
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
train(hyp)
# Evolve hyperparameters (optional)
else:
tb_writer = None
opt.notest, opt.nosave = True, True # only test/save final epoch
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
for _ in range(10): # generations to evolve
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
# Select parent(s)
parent = 'single' # parent selection method: 'single' or 'weighted'
x = np.loadtxt('evolve.txt', ndmin=2)
n = min(5, len(x)) # number of previous results to consider
x = x[np.argsort(-fitness(x))][:n] # top n mutations
w = fitness(x) - fitness(x).min() # weights
if parent == 'single' or len(x) == 1:
# x = x[random.randint(0, n - 1)] # random selection
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
elif parent == 'weighted':
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
# Mutate
mp, s = 0.9, 0.2 # mutation probability, sigma
npr = np.random
npr.seed(int(time.time()))
g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1]) # gains
ng = len(g)
v = np.ones(ng)
while all(v == 1): # mutate until a change occurs (prevent duplicates)
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
hyp[k] = x[i + 7] * v[i] # mutate
# Clip to limits
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
for k, v in zip(keys, limits):
hyp[k] = np.clip(hyp[k], v[0], v[1])
# Train mutation
results = train(hyp.copy())
# Write mutation results
print_mutation(hyp, results, opt.bucket)
# Plot results
# plot_evolution_results(hyp)