-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mutiGPUs.py
437 lines (377 loc) · 16.5 KB
/
train_mutiGPUs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import time
import argparse
import json
import logging
import math
import os
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
import datasets
import numpy as np
import pandas as pd
# import wandb
import torch
from torch.utils.data.distributed import DistributedSampler
from datasets import load_dataset
from torch.utils.data import Dataset, DataLoader
from tqdm.auto import tqdm
import torch.multiprocessing as mp
from tools.torch_tools import get_encode_text, get_latent
import diffusers
import transformers
from models import build_pretrained_models, AudioGPTDiffusion
from transformers import SchedulerType, get_scheduler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group, get_backend, barrier
class Trainer:
def __init__(
self,
model: torch.nn.Module,
train_data: DataLoader,
optimizer: torch.optim.Optimizer,
lr_scheduler: torch.optim.lr_scheduler.LambdaLR,
gpu_id: int,
save_every: int,
) -> None:
self.gpu_id = gpu_id
self.model = model.to(gpu_id)
self.train_data = train_data
self.optimizer = optimizer
self.save_every = save_every
self.lr_scheduler = lr_scheduler
self.model = DDP(model, device_ids=[gpu_id])
self.mae_path = '/home/huangqiaochu/dtj/data/audiocaps/crossattn_audiomae_generated/'
# self.t5_path = '/home/huangqiaochu/dtj/data/audiocaps/crossattn_flan_t5/'
self.latent_path = '/home/huangqiaochu/dtj/data/audiocaps/latents/'
def _run_batch(self, text_emd, mask, latent):
loss = self.model(latent, text_emd, mask, validation_mode=False)
self.total_loss += loss.detach().float()
loss.backward()
self.optimizer.step()
self.lr_scheduler.step()
self.optimizer.zero_grad()
def _run_epoch(self, epoch):
b_sz = len(next(iter(self.train_data))[0])
self.total_loss = 0
print(f"[GPU{self.gpu_id}] Epoch {epoch} | Batchsize: {b_sz} | Steps: {len(self.train_data)*epoch}")
self.train_data.sampler.set_epoch(epoch)
progress_bar = tqdm(range(len(self.train_data)), disable= self.gpu_id != 0)
for text, audios, _ in self.train_data:
for i, audio in enumerate(audios):
name ='Y'+ '_'.join(audio.split('/')[-1].split('_')[:-1]) + '.wav'
text[i] = name.split('/')[-1].split('.')[0]
text_emd, mask = get_encode_text(text, self.mae_path+'train')
latent = get_latent(text, self.latent_path+'train')
text_emd = text_emd.to(self.gpu_id)
mask = mask.to(self.gpu_id)
latent = latent.to(self.gpu_id)
self._run_batch(text_emd, mask, latent)
progress_bar.update(1)
def _save_checkpoint(self, epoch):
ckp = self.model.module.state_dict()
PATH = "checkpoint.pt"
torch.save(ckp, PATH)
print(f"Epoch {epoch} | Training checkpoint saved at {PATH}")
def train(self, max_epochs: int):
for epoch in range(max_epochs):
self._run_epoch(epoch)
if self.gpu_id == 0 and epoch % self.save_every == 0:
self._save_checkpoint(epoch)
result = {}
result["epoch"] = epoch,
result["step"] = epoch*len(self.train_data)
result["train_loss"] = round(self.total_loss.item()/len(self.train_data), 4)
logging.info(result)
with open("{}/summary.jsonl".format(args.output_dir), "a") as f:
f.write(json.dumps(result) + "\n\n")
def parse_args(parser):
parser.add_argument(
"--train_file", type=str, default="data/train_audiocaps.json",
help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default="data/valid_audiocaps.json",
help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--test_file", type=str, default="data/test_audiocaps.json",
help="A csv or a json file containing the test data for generation."
)
parser.add_argument(
"--num_examples", type=int, default=-1,
help="How many examples to use for training and validation.",
)
parser.add_argument(
"--scheduler_name", type=str, default="/home/huangqiaochu/dtj/tango/huggingface/stabilityai--stable-diffusion-2-1/scheduler_config.json",
help="Scheduler identifier.",
)
parser.add_argument(
"--unet_model_name", type=str, default=None,
help="UNet model identifier from huggingface.co/models.",
)
parser.add_argument(
"--unet_model_config", type=str, default='configs/diffusion_model_config_MAE.json',
help="UNet model config json path.",
)
parser.add_argument(
"--hf_model", type=str, default=None,
help="Tango model identifier from huggingface: declare-lab/tango",
)
parser.add_argument(
"--snr_gamma", type=float, default=None,
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
"More details here: https://arxiv.org/abs/2303.09556.",
)
parser.add_argument(
"--freeze_text_encoder", action="store_true", default=True,
help="Freeze the text encoder model.",
)
parser.add_argument(
"--text_column", type=str, default="captions",
help="The name of the column in the datasets containing the input texts.",
)
parser.add_argument(
"--audio_column", type=str, default="location",
help="The name of the column in the datasets containing the audio paths.",
)
parser.add_argument(
"--augment", action="store_true", default=False,
help="Augment training data.",
)
parser.add_argument(
"--uncondition", action="store_true", default=False,
help="10% uncondition for training.",
)
parser.add_argument(
"--prefix", type=str, default=None,
help="Add prefix in text prompts.",
)
parser.add_argument(
"--per_device_train_batch_size", type=int, default=2,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size", type=int, default=2,
help="Batch size (per device) for the validation dataloader.",
)
parser.add_argument(
"--learning_rate", type=float, default=3e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--weight_decay", type=float, default=1e-8,
help="Weight decay to use."
)
parser.add_argument(
"--num_train_epochs", type=int, default=40,
help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_train_steps", type=int, default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps", type=int, default=4,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type", type=SchedulerType, default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0,
help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--adam_beta1", type=float, default=0.9,
help="The beta1 parameter for the Adam optimizer."
)
parser.add_argument(
"--adam_beta2", type=float, default=0.999,
help="The beta2 parameter for the Adam optimizer."
)
parser.add_argument(
"--adam_weight_decay", type=float, default=1e-2,
help="Weight decay to use."
)
parser.add_argument(
"--adam_epsilon", type=float, default=1e-08,
help="Epsilon value for the Adam optimizer"
)
parser.add_argument(
"--output_dir", type=str, default=None,
help="Where to store the final model."
)
parser.add_argument(
"--checkpointing_steps", type=str, default="best",
help="Whether the various states should be saved at the end of every 'epoch' or 'best' whenever validation loss decreases.",
)
parser.add_argument(
"--resume_from_checkpoint", type=str, default=None,
help="If the training should continue from a local checkpoint folder.",
)
parser.add_argument(
"--with_tracking", action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to", type=str, default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)
def get_logger(__name__):
# 创建一个日志记录器对象
logger = logging.getLogger(__name__)
# 设置日志级别(可根据需要设置不同的级别)
logger.setLevel(logging.INFO)
# 创建一个文件处理器,用于将日志信息存储到文件
file_handler = logging.FileHandler('logs/ddp.log')
file_handler.setLevel(logging.INFO)
# 创建一个控制台处理器,用于将日志信息打印到控制台
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
# 创建一个日志格式化器,用于指定日志信息的格式
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
# 将处理器添加到日志记录器对象
logger.addHandler(file_handler)
logger.addHandler(console_handler)
return logger
def ddp_setup(rank, world_size):
"""
Args:
rank: Unique identifier of each process
world_size: Total number of processes
"""
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355"
init_process_group(backend="nccl", rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
def save_args(args):
# Handle output directory creation and wandb tracking, 只在主进程设置
if args.output_dir is None or args.output_dir == "":
args.output_dir = "saved/" + str(int(time.time()))
os.makedirs("{}/{}".format(args.output_dir, "outputs"), exist_ok=True)
with open("{}/summary.jsonl".format(args.output_dir), "a") as f:
f.write(json.dumps(dict(vars(args))) + "\n\n")
class Text2AudioDataset(Dataset):
def __init__(self, dataset, prefix, text_column, audio_column, num_examples=-1):
inputs = list(dataset[text_column])
self.inputs = [prefix + inp for inp in inputs]
self.audios = list(dataset[audio_column])
self.indices = list(range(len(self.inputs)))
self.mapper = {}
for index, audio, text in zip(self.indices, self.audios, inputs):
self.mapper[index] = [audio, text]
if num_examples != -1:
self.inputs, self.audios = self.inputs[:num_examples], self.audios[:num_examples]
self.indices = self.indices[:num_examples]
def __len__(self):
return len(self.inputs)
def get_num_instances(self):
return len(self.inputs)
def __getitem__(self, index):
s1, s2, s3 = self.inputs[index], self.audios[index], self.indices[index]
return s1, s2, s3
def collate_fn(self, data):
dat = pd.DataFrame(data)
return [dat[i].tolist() for i in dat]
def prepare_dataset(args):
# Get the datasets
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
if args.test_file is not None:
data_files["test"] = args.test_file
else:
if args.validation_file is not None:
data_files["test"] = args.validation_file
extension = args.train_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
if args.prefix:
prefix = args.prefix
else:
prefix = ""
text_column, audio_column = args.text_column, args.audio_column
train_dataset = Text2AudioDataset(raw_datasets["train"], prefix, text_column, audio_column, args.num_examples)
eval_dataset = Text2AudioDataset(raw_datasets["validation"], prefix, text_column, audio_column, args.num_examples)
test_dataset = Text2AudioDataset(raw_datasets["test"], prefix, text_column, audio_column, args.num_examples)
return train_dataset, eval_dataset, test_dataset
def load_train_objs(rank, args):
if rank == 0:
train_dataset, eval_dataset, test_dataset = prepare_dataset(args)
print("Num instances in train: {}, validation: {}, test: {}".format(train_dataset.get_num_instances(), eval_dataset.get_num_instances(), test_dataset.get_num_instances()))
barrier()
if rank != 0:
train_dataset, eval_dataset, test_dataset = prepare_dataset(args)
barrier()
model = AudioGPTDiffusion(
args.scheduler_name, args.unet_model_name, args.unet_model_config, args.snr_gamma, args.freeze_text_encoder, args.uncondition
)
# Optimizer
if args.unet_model_config:
optimizer_parameters = model.unet.parameters()
num_trainable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
if rank == 0:
print("Optimizing UNet parameters.")
print("Num trainable parameters: {}".format(num_trainable_parameters))
optimizer = torch.optim.AdamW(
optimizer_parameters, lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
return train_dataset, eval_dataset, test_dataset, model, optimizer
def prepare_dataloader(dataset: Dataset, batch_size: int):
return DataLoader(
dataset,
batch_size=batch_size,
pin_memory=True,
shuffle=False,
sampler=DistributedSampler(dataset)
)
def main(rank: int, world_size: int, args: argparse.Namespace):
torch.manual_seed(args.seed)
ddp_setup(rank, world_size)
# Log the process state
logger = get_logger("rank_"+str(rank))
logger.info(f"Process rank: {rank}, World size: {world_size}, Process group: {get_backend()}")
train_dataset, eval_dataset, test_dataset, model, optimizer = load_train_objs(rank, args)
train_dataloader = prepare_dataloader(train_dataset, args.batch_size)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) )
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps
)
trainer = Trainer(model, train_dataloader, optimizer, lr_scheduler, rank, args.save_every)
### Train!
if rank == 0:
save_args(args)
total_batch_size = args.batch_size * world_size
logger.info("***** Running training *****")
logger.info(f" Num Epochs = {args.total_epochs}")
logger.info(f" Instantaneous batch size per device = {args.batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed) = {total_batch_size}")
trainer.train(args.total_epochs)
destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='simple distributed training job')
parser.add_argument('--total_epochs', default=40, type=int, help='Total epochs to train the model')
parser.add_argument('--save_every', default=5, type=int, help='How often to save a snapshot')
parser.add_argument('--batch_size', default=1, type=int, help='Input batch size on each device (default: 32)')
parser.add_argument('--seed', default=42, type=int, help='Random seed (default: 42)')
parse_args(parser) ## add more args
args = parser.parse_args()
world_size = torch.cuda.device_count()
mp.spawn(main, args=(world_size, args), nprocs=world_size)