forked from bitsandbytes-foundation/bitsandbytes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodules.py
723 lines (601 loc) · 27.8 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import copy
from typing import Any, Dict, Optional, TypeVar, Union, overload
import warnings
import torch
from torch import Tensor, device, dtype, nn
import torch.nn.functional as F
import bitsandbytes as bnb
from bitsandbytes.autograd._functions import get_tile_inds, undo_layout
from bitsandbytes.functional import QuantState
from bitsandbytes.optim import GlobalOptimManager
from bitsandbytes.utils import OutlierTracer
T = TypeVar("T", bound="torch.nn.Module")
class StableEmbedding(torch.nn.Embedding):
"""
Custom embedding layer designed for stable training in NLP tasks. The stable
embedding layer improves stability during optimization for models with word
embeddings, addressing issues related to the non-uniform distribution of input
tokens.
This stable embedding layer is initialized with Xavier uniform initialization,
followed by layer normalization. It is designed to support aggressive quantization,
addressing extreme gradient variations in non-uniform input distributions. The
stability of training is enhanced by using 32-bit optimizer states specifically
for this layer.
Example:
```
# Initialize StableEmbedding layer with vocabulary size 1000, embedding dimension 300
embedding_layer = StableEmbedding(num_embeddings=1000, embedding_dim=300)
# Reset embedding parameters
embedding_layer.reset_parameters()
# Perform a forward pass with input tensor
input_tensor = torch.tensor([1, 2, 3])
output_embedding = embedding_layer(input_tensor)
```
Attributes:
norm (torch.nn.LayerNorm): Layer normalization applied after the embedding.
Methods:
reset_parameters(): Reset embedding parameters using Xavier uniform initialization.
forward(input: Tensor) -> Tensor: Forward pass through the stable embedding layer.
Reference:
- [8-bit optimizer paper](https://arxiv.org/pdf/2110.02861.pdf)
"""
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
device=None,
dtype=None,
) -> None:
"""
Args:
num_embeddings (`int`): The number of unique embeddings (vocabulary size).
embedding_dim (`int`): The dimensionality of the embedding.
padding_idx (`Optional[int]`): If specified, pads the output with zeros at the given index.
max_norm (`Optional[float]`): If given, renormalizes embeddings to have a maximum L2 norm.
norm_type (`float`, defaults to `2.0`): The p-norm to compute for the max_norm option.
scale_grad_by_freq (`bool`): Scale gradient by frequency during backpropagation.
sparse (`bool`): If True, computes sparse gradients; False, computes dense gradients.
_weight (`Optional[Tensor]`): Pre-trained embeddings.
"""
super().__init__(
num_embeddings,
embedding_dim,
padding_idx,
max_norm,
norm_type,
scale_grad_by_freq,
sparse,
_weight,
device,
dtype,
)
self.norm = torch.nn.LayerNorm(embedding_dim, device=device)
GlobalOptimManager.get_instance().register_module_override(
self, "weight", {"optim_bits": 32}
)
def reset_parameters(self) -> None:
torch.nn.init.xavier_uniform_(self.weight)
self._fill_padding_idx_with_zero()
""" !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
to make the Layer compatible with Pytorch < 1.9.
This means that if this changes in future PyTorch releases this need to change too
which is cumbersome. However, with this we can ensure compatibility with previous
PyTorch releases.
"""
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(self, input: Tensor) -> Tensor:
emb = F.embedding(
input,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
# always apply layer norm in full precision
emb = emb.to(torch.get_default_dtype())
return self.norm(emb).to(self.weight.dtype)
class Embedding(torch.nn.Embedding):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
device: Optional[device] = None,
) -> None:
super().__init__(
num_embeddings,
embedding_dim,
padding_idx,
max_norm,
norm_type,
scale_grad_by_freq,
sparse,
_weight,
device=device
)
GlobalOptimManager.get_instance().register_module_override(
self, "weight", {"optim_bits": 32}
)
def reset_parameters(self) -> None:
torch.nn.init.xavier_uniform_(self.weight)
self._fill_padding_idx_with_zero()
""" !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
to make the Layer compatible with Pytorch < 1.9.
This means that if this changes in future PyTorch releases this need to change too
which is cumbersome. However, with this we can ensure compatibility with previous
PyTorch releases.
"""
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(self, input: Tensor) -> Tensor:
emb = F.embedding(
input,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
return emb
class Params4bit(torch.nn.Parameter):
def __new__(
cls,
data: Optional[torch.Tensor] = None,
requires_grad=False, # quantized weights should be frozen by default
quant_state: Optional[QuantState] = None,
blocksize: int = 64,
compress_statistics: bool = True,
quant_type: str = 'fp4',
quant_storage: torch.dtype = torch.uint8,
module: Optional["Linear4bit"] = None,
bnb_quantized: bool = False
) -> "Params4bit":
if data is None:
data = torch.empty(0)
self = torch.Tensor._make_subclass(cls, data, requires_grad)
self.blocksize = blocksize
self.compress_statistics = compress_statistics
self.quant_type = quant_type
self.quant_state = quant_state
self.quant_storage = quant_storage
self.bnb_quantized = bnb_quantized
self.data = data
self.module = module
return self
def __getstate__(self):
state = self.__dict__
state["data"] = self.data
state["requires_grad"] = self.requires_grad
return state
def __setstate__(self, state):
self.requires_grad = state["requires_grad"]
self.blocksize = state["blocksize"]
self.compress_statistics = state["compress_statistics"]
self.quant_type = state["quant_type"]
self.quant_state = state["quant_state"]
self.data = state["data"]
self.quant_storage = state["quant_storage"]
self.bnb_quantized = state["bnb_quantized"]
self.module = state["module"]
def __deepcopy__(self,memo):
new_instance = type(self).__new__(type(self))
state = self.__getstate__()
new_instance.__setstate__(state)
new_instance.quant_state = copy.deepcopy(state["quant_state"])
new_instance.data = copy.deepcopy(state["data"])
return new_instance
def __copy__(self):
new_instance = type(self).__new__(type(self))
state = self.__getstate__()
new_instance.__setstate__(state)
return new_instance
@classmethod
def from_prequantized(cls, data: torch.Tensor, quantized_stats: Dict[str, Any], requires_grad: bool = False, device='cuda', **kwargs) -> "Params4bit":
self = torch.Tensor._make_subclass(cls, data.to(device))
self.requires_grad = requires_grad
self.quant_state = QuantState.from_dict(qs_dict=quantized_stats, device=device)
self.blocksize = self.quant_state.blocksize
self.compress_statistics = self.quant_state.nested
self.quant_type = self.quant_state.quant_type
self.bnb_quantized = True
return self
def _quantize(self, device):
w = self.data.contiguous().cuda(device)
w_4bit, quant_state = bnb.functional.quantize_4bit(
w,
blocksize=self.blocksize,
compress_statistics=self.compress_statistics,
quant_type=self.quant_type,
quant_storage=self.quant_storage,
)
self.data = w_4bit
self.quant_state = quant_state
if self.module is not None:
self.module.quant_state = quant_state
self.bnb_quantized = True
return self
def cuda(self, device: Optional[Union[int, device, str]] = None, non_blocking: bool = False):
return self.to(device='cuda' if device is None else device, non_blocking=non_blocking)
@overload
def to(self: T, device: Optional[Union[int, device]] = ..., dtype: Optional[Union[dtype, str]] = ..., non_blocking: bool = ...,) -> T:
...
@overload
def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T:
...
@overload
def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T:
...
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
if (device is not None and device.type == "cuda" and not self.bnb_quantized):
return self._quantize(device)
else:
if self.quant_state is not None:
self.quant_state.to(device)
new_param = Params4bit(super().to(device=device, dtype=dtype, non_blocking=non_blocking),
requires_grad=self.requires_grad, quant_state=self.quant_state,
blocksize=self.blocksize, compress_statistics=self.compress_statistics,
quant_type=self.quant_type)
return new_param
class Linear4bit(nn.Linear):
"""
This class is the base module for the 4-bit quantization algorithm presented in [QLoRA](https://arxiv.org/abs/2305.14314).
QLoRA 4-bit linear layers uses blockwise k-bit quantization under the hood, with the possibility of selecting various
compute datatypes such as FP4 and NF4.
In order to quantize a linear layer one should first load the original fp16 / bf16 weights into
the Linear4bit module, then call `quantized_module.to("cuda")` to quantize the fp16 / bf16 weights.
Example:
```python
import torch
import torch.nn as nn
import bitsandbytes as bnb
from bnb.nn import Linear4bit
fp16_model = nn.Sequential(
nn.Linear(64, 64),
nn.Linear(64, 64)
)
quantized_model = nn.Sequential(
Linear4bit(64, 64),
Linear4bit(64, 64)
)
quantized_model.load_state_dict(fp16_model.state_dict())
quantized_model = quantized_model.to(0) # Quantization happens here
```
"""
def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True, quant_type='fp4', quant_storage=torch.uint8, device=None):
"""
Initialize Linear4bit class.
Args:
input_features (`str`):
Number of input features of the linear layer.
output_features (`str`):
Number of output features of the linear layer.
bias (`bool`, defaults to `True`):
Whether the linear class uses the bias term as well.
"""
super().__init__(input_features, output_features, bias, device)
self.weight = Params4bit(self.weight.data, requires_grad=False, compress_statistics=compress_statistics, quant_type=quant_type, quant_storage=quant_storage, module=self)
# self.persistent_buffers = [] # TODO consider as way to save quant state
self.compute_dtype = compute_dtype
self.compute_type_is_set = False
self.quant_state = None
self.quant_storage = quant_storage
def set_compute_type(self, x):
if x.dtype in [torch.float32, torch.bfloat16]:
# the input is in a dtype that is safe to compute in, we switch
# to this type for speed and stability
self.compute_dtype = x.dtype
elif x.dtype == torch.float16:
# we take the compoute dtype passed into the layer
if self.compute_dtype == torch.float32 and (x.numel() == x.shape[-1]):
# single batch inference with input torch.float16 and compute_dtype float32 -> slow inference when it could be fast
# warn the user about this
warnings.warn('Input type into Linear4bit is torch.float16, but bnb_4bit_compute_dtype=torch.float32 (default). This will lead to slow inference.')
warnings.filterwarnings('ignore', message='.*inference.')
if self.compute_dtype == torch.float32 and (x.numel() != x.shape[-1]):
warnings.warn('Input type into Linear4bit is torch.float16, but bnb_4bit_compute_dtype=torch.float32 (default). This will lead to slow inference or training speed.')
warnings.filterwarnings('ignore', message='.*inference or training')
def _save_to_state_dict(self, destination, prefix, keep_vars):
"""
save weight and bias,
then fill state_dict with components of quant_state
"""
super()._save_to_state_dict(destination, prefix, keep_vars) # saving weight and bias
if getattr(self.weight, "quant_state", None) is not None:
for k, v in self.weight.quant_state.as_dict(packed=True).items():
destination[prefix + "weight." + k] = v if keep_vars else v.detach()
def forward(self, x: torch.Tensor):
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
if getattr(self.weight, 'quant_state', None) is None:
if getattr(self, 'quant_state', None) is not None:
# the quant state got lost when the parameter got converted. This happens for example for fsdp
# since we registered the module, we can recover the state here
assert self.weight.shape[1] == 1
if not isinstance(self.weight, Params4bit):
self.weight = Params4bit(self.weight, quant_storage=self.quant_storage)
self.weight.quant_state = self.quant_state
else:
print('FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first.')
if not self.compute_type_is_set:
self.set_compute_type(x)
self.compute_type_is_set = True
inp_dtype = x.dtype
if self.compute_dtype is not None:
x = x.to(self.compute_dtype)
bias = None if self.bias is None else self.bias.to(self.compute_dtype)
out = bnb.matmul_4bit(x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state)
out = out.to(inp_dtype)
return out
class LinearFP4(Linear4bit):
def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True, quant_storage=torch.uint8, device=None):
super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4', quant_storage, device)
class LinearNF4(Linear4bit):
''' Implements the NF4 data type.
Constructs a quantization data type where each bin has equal area under a standard normal distribution N(0, 1) that
is normalized into the range [-1, 1].
For more information read the paper: QLoRA: Efficient Finetuning of Quantized LLMs (https://arxiv.org/abs/2305.14314)
Implementation of the NF4 data type in bitsandbytes can be found in the `create_normal_map` function in
the `functional.py` file: https://github.com/TimDettmers/bitsandbytes/blob/main/bitsandbytes/functional.py#L236.
'''
def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True, quant_storage=torch.uint8, device=None):
super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4', quant_storage, device)
class Int8Params(torch.nn.Parameter):
def __new__(
cls,
data=None,
requires_grad=True,
has_fp16_weights=False,
CB=None,
SCB=None,
):
cls.has_fp16_weights = has_fp16_weights
cls.CB = None
cls.SCB = None
if data is None:
data = torch.empty(0)
return torch.Tensor._make_subclass(cls, data, requires_grad)
def cuda(self, device):
if self.has_fp16_weights:
return super().cuda(device)
else:
# we store the 8-bit rows-major weight
# we convert this weight to the turning/ampere weight during the first inference pass
B = self.data.contiguous().half().cuda(device)
CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
del CBt
del SCBt
self.data = CB
self.CB = CB
self.SCB = SCB
return self
@overload
def to(
self: T,
device: Optional[Union[int, device]] = ...,
dtype: Optional[Union[dtype, str]] = ...,
non_blocking: bool = ...,
) -> T:
...
@overload
def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T:
...
@overload
def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T:
...
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
*args, **kwargs
)
if (
device is not None
and device.type == "cuda"
and self.data.device.type == "cpu"
):
return self.cuda(device)
else:
new_param = Int8Params(
super().to(
device=device, dtype=dtype, non_blocking=non_blocking
),
requires_grad=self.requires_grad,
has_fp16_weights=self.has_fp16_weights,
)
new_param.CB = self.CB
new_param.SCB = self.SCB
return new_param
def maybe_rearrange_weight(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
weight = state_dict.get(f"{prefix}weight")
if weight is None:
# if the state dict has no weights for this layer (e.g., LoRA finetuning), do nothing
return
weight_format = state_dict.pop(f"{prefix}weight_format", "row")
if weight_format != "row":
tile_indices = get_tile_inds(weight_format, weight.device)
state_dict[f"{prefix}weight"] = undo_layout(weight, tile_indices)
class Linear8bitLt(nn.Linear):
"""
This class is the base module for the [LLM.int8()](https://arxiv.org/abs/2208.07339) algorithm.
To read more about it, have a look at the paper.
In order to quantize a linear layer one should first load the original fp16 / bf16 weights into
the Linear8bitLt module, then call `int8_module.to("cuda")` to quantize the fp16 weights.
Example:
```python
import torch
import torch.nn as nn
import bitsandbytes as bnb
from bnb.nn import Linear8bitLt
fp16_model = nn.Sequential(
nn.Linear(64, 64),
nn.Linear(64, 64)
)
int8_model = nn.Sequential(
Linear8bitLt(64, 64, has_fp16_weights=False),
Linear8bitLt(64, 64, has_fp16_weights=False)
)
int8_model.load_state_dict(fp16_model.state_dict())
int8_model = int8_model.to(0) # Quantization happens here
```
"""
def __init__(self, input_features, output_features, bias=True, has_fp16_weights=True,
memory_efficient_backward=False, threshold=0.0, index=None, device=None):
"""
Initialize Linear8bitLt class.
Args:
input_features (`str`):
Number of input features of the linear layer.
output_features (`str`):
Number of output features of the linear layer.
bias (`bool`, defaults to `True`):
Whether the linear class uses the bias term as well.
"""
super().__init__(input_features, output_features, bias, device)
assert not memory_efficient_backward, "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
self.state = bnb.MatmulLtState()
self.index = index
self.state.threshold = threshold
self.state.has_fp16_weights = has_fp16_weights
self.state.memory_efficient_backward = memory_efficient_backward
if threshold > 0.0 and not has_fp16_weights:
self.state.use_pool = True
self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights)
self._register_load_state_dict_pre_hook(maybe_rearrange_weight)
def _save_to_state_dict(self, destination, prefix, keep_vars):
super()._save_to_state_dict(destination, prefix, keep_vars)
# we only need to save SCB as extra data, because CB for quantized weights is already stored in weight.data
scb_name = "SCB"
# case 1: .cuda was called, SCB is in self.weight
param_from_weight = getattr(self.weight, scb_name)
# case 2: self.init_8bit_state was called, SCB is in self.state
param_from_state = getattr(self.state, scb_name)
# case 3: SCB is in self.state, weight layout reordered after first forward()
layout_reordered = self.state.CxB is not None
key_name = prefix + f"{scb_name}"
format_name = prefix + "weight_format"
if not self.state.has_fp16_weights:
if param_from_weight is not None:
destination[key_name] = param_from_weight if keep_vars else param_from_weight.detach()
destination[format_name] = "row"
elif param_from_state is not None and not layout_reordered:
destination[key_name] = param_from_state if keep_vars else param_from_state.detach()
destination[format_name] = "row"
elif param_from_state is not None:
destination[key_name] = param_from_state if keep_vars else param_from_state.detach()
destination[format_name] = self.state.formatB
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
error_msgs)
unexpected_copy = list(unexpected_keys)
for key in unexpected_copy:
input_name = key[len(prefix):]
if input_name == "SCB":
if self.weight.SCB is None:
# buffers not yet initialized, can't access them directly without quantizing first
raise RuntimeError("Loading a quantized checkpoint into non-quantized Linear8bitLt is "
"not supported. Please call module.cuda() before module.load_state_dict()")
input_param = state_dict[key]
self.weight.SCB.copy_(input_param)
if self.state.SCB is not None:
self.state.SCB = self.weight.SCB
unexpected_keys.remove(key)
def init_8bit_state(self):
self.state.CB = self.weight.CB
self.state.SCB = self.weight.SCB
self.weight.CB = None
self.weight.SCB = None
def forward(self, x: torch.Tensor):
self.state.is_training = self.training
if self.weight.CB is not None:
self.init_8bit_state()
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
if not self.state.has_fp16_weights:
if self.state.CB is not None and self.state.CxB is not None:
# we converted 8-bit row major to turing/ampere format in the first inference pass
# we no longer need the row-major weight
del self.state.CB
self.weight.data = self.state.CxB
return out
class OutlierAwareLinear(nn.Linear):
def __init__(self, input_features, output_features, bias=True, device=None):
super().__init__(input_features, output_features, bias, device)
self.outlier_dim = None
self.is_quantized = False
def forward_with_outliers(self, x, outlier_idx):
raise NotImplementedError('Please override the `forward_with_outliers(self, x, outlier_idx)` function')
def quantize_weight(self, w, outlier_idx):
raise NotImplementedError('Please override the `quantize_weights(self, w, outlier_idx)` function')
def forward(self, x):
if self.outlier_dim is None:
tracer = OutlierTracer.get_instance()
if not tracer.is_initialized():
print('Please use OutlierTracer.initialize(model) before using the OutlierAwareLinear layer')
outlier_idx = tracer.get_outliers(self.weight)
#print(outlier_idx, tracer.get_hvalue(self.weight))
self.outlier_dim = outlier_idx
if not self.is_quantized:
w = self.quantize_weight(self.weight, self.outlier_dim)
self.weight.data.copy_(w)
self.is_quantized = True
class SwitchBackLinearBnb(nn.Linear):
def __init__(
self,
input_features,
output_features,
bias=True,
has_fp16_weights=True,
memory_efficient_backward=False,
threshold=0.0,
index=None,
device=None
):
super().__init__(
input_features, output_features, bias, device
)
self.state = bnb.MatmulLtState()
self.index = index
self.state.threshold = threshold
self.state.has_fp16_weights = has_fp16_weights
self.state.memory_efficient_backward = memory_efficient_backward
if threshold > 0.0 and not has_fp16_weights:
self.state.use_pool = True
self.weight = Int8Params(
self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights
)
def init_8bit_state(self):
self.state.CB = self.weight.CB
self.state.SCB = self.weight.SCB
self.weight.CB = None
self.weight.SCB = None
def forward(self, x):
self.state.is_training = self.training
if self.weight.CB is not None:
self.init_8bit_state()
out = bnb.matmul_mixed(x.half(), self.weight.half(), bias=None, state=self.state) + self.bias