-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvector_search.py
140 lines (121 loc) · 5.43 KB
/
vector_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
from langchain_text_splitters import SpacyTextSplitter
from sentence_transformers import SentenceTransformer
from typing import Dict, List
import torch
from qdrant_client import http, models, QdrantClient
from transformers import T5Tokenizer, T5ForConditionalGeneration
class HybridVectorSearch:
cuda_device = torch.device("cpu")
sparse_model = "naver/splade-v3"
tokenizer = AutoTokenizer.from_pretrained(sparse_model)
model = AutoModelForMaskedLM.from_pretrained(sparse_model).to(cuda_device)
text_splitter = SpacyTextSplitter(chunk_size=1000)
dense_encoder = SentenceTransformer("all-MiniLM-L6-v2", device="cpu")
model_name_t5 = "Falconsai/text_summarization" # "t5-small"
tokenizer_t5 = T5Tokenizer.from_pretrained(model_name_t5)
model_t5 = T5ForConditionalGeneration.from_pretrained(model_name_t5).to("cuda")
client = QdrantClient(url="http://localhost:6333")
earnings_collection = "earnings_calls"
@staticmethod
def reciprocal_rank_fusion(
responses: List[List[http.models.ScoredPoint]], limit: int = 10
) -> List[http.models.ScoredPoint]:
def compute_score(pos: int) -> float:
ranking_constant = 2 # the constant mitigates the impact of high rankings by outlier systems
return 1 / (ranking_constant + pos)
scores: Dict[http.models.ExtendedPointId, float] = {}
point_pile = {}
for response in responses:
for i, scored_point in enumerate(response):
if scored_point.id in scores:
scores[scored_point.id] += compute_score(i)
else:
point_pile[scored_point.id] = scored_point
scores[scored_point.id] = compute_score(i)
sorted_scores = sorted(scores.items(), key=lambda item: item[1], reverse=True)
sorted_points = []
for point_id, score in sorted_scores[:limit]:
point = point_pile[point_id]
point.score = score
sorted_points.append(point)
return sorted_points
@staticmethod
def summary(text: str):
inputs = HybridVectorSearch.tokenizer_t5.encode(
f"summarize: {text}", return_tensors="pt", max_length=1024, truncation=True
).to("cuda")
summary_ids = HybridVectorSearch.model_t5.generate(
inputs,
max_length=512,
min_length=100,
length_penalty=2.0,
num_beams=4,
early_stopping=True,
)
summary = HybridVectorSearch.tokenizer_t5.decode(
summary_ids[0], skip_special_tokens=True
)
return summary
@staticmethod
def compute_vector(text):
tokens = HybridVectorSearch.tokenizer(text, return_tensors="pt").to(
HybridVectorSearch.cuda_device
)
split_texts = []
if len(tokens["input_ids"][0]) >= 512:
summary = HybridVectorSearch.summary(text)
split_texts = HybridVectorSearch.text_splitter.split_text(text)
tokens = HybridVectorSearch.tokenizer(summary, return_tensors="pt").to(
HybridVectorSearch.cuda_device
)
output = HybridVectorSearch.model(**tokens)
logits, attention_mask = output.logits, tokens.attention_mask
relu_log = torch.log(1 + torch.relu(logits))
weighted_log = relu_log * attention_mask.unsqueeze(-1)
max_val, _ = torch.max(weighted_log, dim=1)
vec = max_val.squeeze()
return vec, tokens, split_texts
@staticmethod
def search(query_text: str, symbol="AMD"):
vectors, tokens, split_texts = HybridVectorSearch.compute_vector(query_text)
indices = vectors.cpu().nonzero().numpy().flatten()
values = vectors.cpu().detach().numpy()[indices]
sparse_query_vector = models.SparseVector(indices=indices, values=values)
query_vector = HybridVectorSearch.dense_encoder.encode(query_text).tolist()
limit = 3
dense_request = models.SearchRequest(
vector=models.NamedVector(name="dense_vector", vector=query_vector),
limit=limit,
with_payload=True,
)
sparse_request = models.SearchRequest(
vector=models.NamedSparseVector(
name="sparse_vector", vector=sparse_query_vector
),
limit=limit,
with_payload=True,
)
(dense_request_response, sparse_request_response) = (
HybridVectorSearch.client.search_batch(
collection_name=HybridVectorSearch.earnings_collection,
requests=[dense_request, sparse_request],
)
)
ranked_search_response = HybridVectorSearch.reciprocal_rank_fusion(
[dense_request_response, sparse_request_response], limit=10
)
search_response = ""
for search_result in ranked_search_response:
search_response += search_result.payload["conversation"] + "\n"
return ranked_search_response
@staticmethod
def chat_search(query: str, chat_history):
result = HybridVectorSearch.search(query)
chat_history.append((query, "Search Results"))
for search_result in result[:3]:
text = search_result.payload["conversation"]
summary = HybridVectorSearch.summary(text) + f'\n```\n{text} \n```'
chat_history.append((None, summary))
return "", chat_history