forked from Adamdad/CT-Lung-Segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
223 lines (187 loc) · 9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
'''Author: Xingyi Yang
Affiliation: UC San Diego
'''
from tqdm import tqdm
import torch
from torch import nn
from torch.utils.data import DataLoader
from utils.dataset import *
from models.Unet import UNet
from utils.iou import IoU
from utils.Loss import *
from models.ResUnet import ResUNet
import argparse
def train(model,train_loader,optimizer,LOSS_FUNC,EPOCH,PRINT_INTERVAL, epoch, device):
losses = []
for i, batch in enumerate(tqdm(train_loader)):
img, label = batch['img'].to(device), batch['label'].to(device)
output = model(img)
optimizer.zero_grad()
loss = LOSS_FUNC(output, label)
loss.backward()
losses.append(loss.item())
optimizer.step()
if (i + 1) % PRINT_INTERVAL == 0:
tqdm.write('Epoch [%d/%d], Iter [%d/%d], Loss: %.4f'
% (epoch + 1, EPOCH, i + 1, len(train_loader), loss.item()))
return np.mean(losses)
def eval(model,val_loader,LOSS_FUNC, device):
losses = []
for i, batch in enumerate(val_loader):
img, label = batch['img'].to(device), batch['label'].to(device)
output = model(img)
loss = LOSS_FUNC(output, label)
losses.append(loss.item())
return np.mean(losses)
# In[12]:
def main():
parser = argparse.ArgumentParser(description='Image Classification.')
parser.add_argument('--image-dir', type=str, default='../data/dataset_5_10/data/4_4_data_crop')
parser.add_argument('--mask-dir', type=str, default='../data/dataset_5_10/data/med_seg_lungmask')
parser.add_argument('--train-COVID', type=str,
default='../data/dataset_5_10/train_COVID_all_old.txt')
parser.add_argument('--train-NonCOVID', type=str,
default='../data/dataset_5_10/train_NonCOVID_all_old_and_real.txt')
parser.add_argument('--resume',type=str,default='') # ./checkpoint/ResUnet/best.pth.tar
parser.add_argument('--val-COVID', type=str,
default='../data/dataset_5_10/val_COVID.txt')
parser.add_argument('--val-NonCOVID', type=str,
default='../data/dataset_5_10/val_NonCOVID.txt')
parser.add_argument('--test-COVID', type=str,
default='../data/dataset_5_10/test_COVID.txt')
parser.add_argument('--test-NonCOVID', type=str,
default='../data/dataset_5_10/test_NonCOVID.txt')
parser.add_argument('--start-epoch',type = int ,default=0, help='Start training epoch')
parser.add_argument('--checkpoint', type=str, default='./checkpoint/ResUnet/')
args = parser.parse_args()
if os.path.exists(args.checkpoint) == False:
os.makedirs(args.checkpoint)
transform = transforms.Compose([
RandomRescale(0.6,1.5),
RandomCrop((320, 320)),
RandomFlip(),
RandomRotation(),
RandomColor(),
ToTensor(),
Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
])
test_transform = transforms.Compose([
Resize((320, 400)),
ToTensor(),
Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
])
train_dst = SegCOVICTDataset(image_dir=args.image_dir,mask_dir=args.mask_dir,
covid_txt=args.train_COVID,non_covid_txt=args.train_NonCOVID,
transforms=transform)
valid_dst = SegCOVICTDataset(image_dir=args.image_dir,mask_dir=args.mask_dir,
covid_txt=args.val_COVID,non_covid_txt=args.val_NonCOVID,
transforms=test_transform)
test_dst = SegCOVICTDataset(image_dir=args.image_dir, mask_dir=args.mask_dir,
covid_txt=args.test_COVID, non_covid_txt=args.test_NonCOVID,
transforms=test_transform)
batch_size = 16
print("Train set {}\nValidation set {}\nTest set {}".format(len(train_dst),len(valid_dst),len(test_dst)))
train_loader = DataLoader(train_dst,batch_size=batch_size,num_workers=8,shuffle=True)
val_loader = DataLoader(valid_dst,batch_size=2,num_workers=8)
test_loader = DataLoader(test_dst,batch_size=2,num_workers=8)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ResUNet().to(device)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model).to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9)
lr_sheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10)
LOSS_FUNC = DiceCELoss().to(device)
PRINT_INTERVAL = 5
EPOCH= 100
if args.resume:
checkpoint = torch.load(args.resume, map_location="cpu")
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
# optimizer.load_state_dict(checkpoint['optimizer'])
state_dict = checkpoint['state_dict']
msg = model.load_state_dict(state_dict)
print("==load model {}".format(args.resume))
# In[14]:
val_loss_epoch = []
for epoch in range(args.start_epoch,EPOCH):
model.train()
train_loss = train(model, train_loader, optimizer, LOSS_FUNC, EPOCH, PRINT_INTERVAL, epoch, device)
val_loss = eval(model, val_loader, LOSS_FUNC, device)
val_loss_epoch.append(val_loss)
lr_sheduler.step()
tqdm.write('Epoch [%d/%d], Aveage Train Loss: %.4f, Aveage Valiation Loss: %.4f'
% (epoch + 1, EPOCH, train_loss, val_loss))
if val_loss == np.min(val_loss_epoch):
print('Model saved')
state = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
torch.save(state, os.path.join(args.checkpoint,'best.pth.tar'))
def evaluate():
parser = argparse.ArgumentParser(description='Image Classification.')
parser.add_argument('--image-dir', type=str, default='../data/dataset_5_10/data/4_4_data_crop')
parser.add_argument('--mask-dir', type=str, default='../data/dataset_5_10/data/med_seg_lungmask')
parser.add_argument('--train-COVID', type=str,
default='../data/dataset_5_10/train_COVID_all_old.txt')
parser.add_argument('--train-NonCOVID', type=str,
default='../data/dataset_5_10/train_NonCOVID_all_old_and_real.txt')
parser.add_argument('--resume',type=str,default='./checkpoint/ResUnet/best.pth.tar') # ./checkpoint/ResUnet/best.pth.tar
parser.add_argument('--val-COVID', type=str,
default='../data/dataset_5_10/val_COVID.txt')
parser.add_argument('--val-NonCOVID', type=str,
default='../data/dataset_5_10/val_NonCOVID.txt')
parser.add_argument('--test-COVID', type=str,
default='../data/dataset_5_10/test_COVID.txt')
parser.add_argument('--test-NonCOVID', type=str,
default='../data/dataset_5_10/test_NonCOVID.txt')
args = parser.parse_args()
test_transform = transforms.Compose([
Resize((320, 400)),
ToTensor(),
Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
])
test_dst = SegCOVICTDataset(image_dir=args.image_dir, mask_dir=args.mask_dir,
covid_txt=args.test_COVID, non_covid_txt=args.test_NonCOVID,
transforms=test_transform)
test_loader = DataLoader(test_dst,batch_size=2,num_workers=8)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ResUNet().to(device)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model).to(device)
if args.resume:
checkpoint = torch.load(args.resume, map_location="cpu")
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
state_dict = checkpoint['state_dict']
msg = model.load_state_dict(state_dict)
print("==load model {}".format(args.resume))
LOSS = DiceCELoss()
# In[14]:
num_classes = 2
metric = IoU(num_classes)
epoch_loss = 0.0
for step, batch in enumerate(test_loader):
# Get the inputs and labels
img, label = batch['img'].to(device), batch['label'].to(device)
with torch.no_grad():
# Forward propagation
outputs = model(img)
# Loss computation
loss = LOSS(outputs, label)
# Keep track of loss for current epoch
epoch_loss += loss.item()
# Keep track of evaluation the metric
metric.add(outputs.detach(), label.detach())
print("Test Loss {}\tmIOU {}".format(epoch_loss/ len(test_loader), metric.value()))
if __name__ == '__main__':
# main()
evaluate()